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SUMMARY

This report describes the results of a research effort to in-

vestigate a method of obtaining high resolution images of space ob-

jects using earth-bound optical telescopes despite the turbulence of

the atmosphere. The results of this research are an indication that,

using an iterative reconstruction algorithm, it is feasible to re-

construct diffraction-limited images from the Fourier modulus (or

autocorrelation) data provided by stellar speckle interferometry.

Experiments were performed on astronomical data. It was neces-

sary to develop methods of compensating for systematic errors and

noise in the data. These methods were applied to binary star data,

and a diffraction-limited image was successfully reconstructed from

the resulting Fourier modulus data.

The uniqueness of images reconstructed from Fourier modulus data

was explored using the theory of analytic functions. It was shown,

among other things, that if an object or its autocorrelation consists

of separated parts satisfying certain disconnection conditions, then

it is usually uniquely specified by its Fourier modulus.

A new method was developea for reconstructing the support of an

object from the support of its autocorrelation; it involves taking

the intersection of three translates uf the autocorrelation support.

For objects consisting of a number of separated points, a new method

was developed for reconstructing the object.
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HIGH RESOLUTION IMAGING OF SPACE OBJECTS

1
INTRODUCTION AND OBJECTIVES

This report describes the results of the first year of a two-year

research effort to investigate a method of outaining high resolution

images of space objects using earth-bound optical telescopes.

A serious problem in astronomy is that the turbulence of the

earth's atmosphere severely limits the resolution of large earth-

bound optical telescopes. Under good "seeing" conditions the reso-

lution allowed by the atmosphere is typically one second of arc, com-

pared with 0.02 seconds of arc, the theoretical diffraction-limited

resolution of a five-meter diameter telescope. That is, the poten-

tial exists for obtaining images having fifty times finer resolution

than what is ordinarily obtainable.

Several interferometric methods are capable of providing high-

resolution (diffraction-limited) information through atmospheric tur-

bulence. The most promising of these interferometric methods is

Labeyrie's stellar speckle interferometry. The high-resolution in-

formation provided by these methods is the modulus of the Fourier

transform of the object; the phase of the Fourier transform is lost.

Unfortunately, except for the very special case in which an un-

resolved star is very near the object of interest, the Fourier modu-

lus can be used to directly compute only the autocorrelation of the

object, but not the object itself. The autocorrelation is ordinarily

useful only for determining the diameter of the object or the sepa-

ration of a binary star pair.

In recent years it has been shown that this stumbling block can

be overcome by an iterative algorithm for computing the object's

spatial (or angular) brightness distribution from its Fourier modu-

lus. The algorithm relies both on the Fourier modulus data measured

by stellar speckle interferometry and on the a priori constraint that

9



the object distribution is a nonnegative function. Therefore, the

combination of stellar speckle interferometry with the iterative

algorithm can provide diffraction-limited images despite the presence

of atmospheric turbulence.

The goals of this two-year research effort are threefold: (1) to

iirprove the iterative reconstruction algorithm to make it operate

reliably in near real-time on imperfect real-world data, (2) to de-

termine the uniqueness of the solution under various conditions, and

13) to demonstrate the reconstruction technique with real-world

interterometer data, thereby providing images with finer resolution

Lhda; would ordinarily be possible.

As envisioned in the statement of work for this contract, these

goals would be met as follows:

A. Perform initial studies and set priorities for the following

five study areas:

A. analytical study of the input-output concept using a

statistical approach.

2. analytical and computer studies of the uniqueness

problem.

3. variations of the basic algorithm to improve reliability.

4. analysis and computer simulations of the effects of noise

and other imperfections in the data, and methods for

minimizing their effects for the types of noise present

in conventional interferometers.

5. combining the iterative approach with other imaging

techniques such as the Knox-Thompson method.

B. Perform detailed studies of those areas listed above that

are found to be most important.

10



C. Obtain interferometer data, evaluate it, and process it into

imagery.

D. Study the applicability of the iterative technique to other

problems.

11



2

RESEARCH ACCOMPLISHMENTS

The first year's research effort can be divided into three major

topics. (I) Stellar speckle interferometer data was acquired, eval-

uated, and processed into imagery. Methods were developed for mini-

inizin9 the effects of the types of noise and imperfections found in

that data I. (2) Analytical (and to a lesser extent computer)

sLuuies ot the uniqueness problem were performed2'3  (3) A new

method, not envisioned at the beginning of this program, was devel-

oped for reconstructing the support of an object; and for objects

consisting of a number of point-like sources, a new noniterative
4method was developed for reconstructing the object4 . Publications

arising from this research effort are listed as References 1-4 below.

The results obtained for each of the three topics listed above

are summarized in the three respective sections that follow. Refer-

ence I to 4 are included as Appendices A, B, C, and D, respectively.

Chapter 3 of this report contains a more complete discussion of the

support reconstruction method.

1. J.R. Fienup and G.B. Feldkamp, "Astronomical Imaging by Process-
ing Stellar Speckle Interferometry Data," presented at the 24th
Annual Technical Symposium of the SPIE, San Diego, Calif., 30
July 198U; and published in SPIE Proceedings Vol. 243, Applica-
tions of Speckle Phenomena (July 1980), p. 95.

?. T.R. Crimmins and J.R. Fienup, "Phase Retrieval for Functions
with Discurinected Support," submitted to J. Math Physics.

3. T.R. Crimmins and J.R. Fienup, "Comments on Claims Concerning
the Uniqueness of Solutions to the Phase Retrieval Problem,"
submitted to J. Opt. Soc. Am.

4. J.R. Fienup and T.R. Crimmins, "Determining the Support of an
Object from the Support of Its Autocorrelation," presented at
the 1980 Annual Meeting of the Optical Society of America,
Chicago, Ill., 15 October 1980; Abstract: J. Opt. Soc. Am. 70,
hl (1980).
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2.1 ASTRONOMICAL DATA PROCESSING

Stellar speckle interferometry data was obtained both from the

Steward Observatory Stellar Speckle Interferometry Program (via K.

Hege, Steward Observatory) and from the Anglo-Australian Telescope

(via J.C. Dainty, U. Rochester).

The data from the Anglo-Australian Telescope was in the form of

many short-exposure images on 16 mm cine film. A number of methods

for digitizing the data were explored, and the one chosen, the most

economical by far, was the following. The 16 mm film was cut into

strips and contact copied, along with grey-scale step wedges, onto 9

x 9 inch sheets of film. The 9-inch sheets of film were then sent

to the image Processina Institute at the University of Southern

California for digitization on their Optronics digitizer. Software

would then have to be developed in order to extract the desired data

fruin the digitized array (which includes 16 mm film sprocket holes,

etc.). After the data was digitized it was discovered that the

Optronics digitizer had been malfunctioning and required repairs.

The film will have to be redigitized before further experimentation

can proceed with this data.

Considerable progress was made with the Steward Observatory data,

which was already in digital form. A description of that work is

found in Appendix A (Ref. 1), and is summarized below.

It was previously known that it is necessary to compensate the

Fourier modulus data for a certain noise bias term due to photon

noise. Using the Steward Observatory data, it was found that the

detection process resulted in a frequency transfer function, which

we call the detection transfer function, which, in addition to being

an error itself, prevented the compensation of the noise bias.

Methods of determining the detection transfer function from the data

and compensating for it was developed. Methods of compensating for

other systematic errors were also developed. These methods were

13



aip p I~ icvt stel lar speckle interteroletry data Of d binary star sys-

till, aind a ditfractin-limit.ed image was successful ly reconstructed

frow. I lit, rebu I t i y comperlsdted [- our ier, modii 1 us data .

Hdlaying gadinted th is exper ience wi th s inglIe arid b)inary Star data,

1.ill nex\t, step will be t-o use thu samle mthouds on more comlp] icated

~Ll icssuch as asteroids or Joy ian mioons.

jNIQ0ELSS THEORY

Dile priniciple means of explor-irly the un iquerless of 1ilidyeS recon--

.,truLCtcd from Four-ier mlodulus data has been the theory of analytic

tujittins. As described in more detail in Appendix b, for the one-

dimrerislotial case there dre Usually many different objects having the

-,ci. Fourier- modulus. ExamDples of both uniqueness anid non-uniqueness

ar-e given. However, it is shc~n that if a function or its auto-

corrldtiol satisfy certain disconnection conditions, then the solu-

(ioii is unique unless the separated parts of the function are related

to uric dnotner in a special way. Therefore, a functions satisfying

Lt-ese conditions can usually be uniquely reconstructed fromn its

rkitdi ill odu (or from its autocorrelatiori). It is also shown that

it ti lullii-red I comiplex zeroes of the Fourier transformi Of a function

,) JiSUt..oito..df support are finite in number, then thw support of

tJf1,ti1li as well as the furiction itself satisfy some special

mi iL ion-, . In is, riiakes it, unil i kely that the Four icr transform of a

.jivteni forictiori would have only a finite number of non-real zeroes.

fIn the course of this work it was aiscoverc that some of the

theory appearing previously in the literature was in er-ror, as de-

,m(ribeu in Appendix G, (Ref. 3) . The detailed corrected theory is

coritille in Appendix B3.

Te dtte the theory of analytic functions has not been extended

to two dimensions, the Case of miost interest in this research effort.

The two dimlensional case is not a direct extension of the one-

(Jiimersionlal analysis. The high probability of ambiguous solutions

14



in one dimension does not seem to be the case in two dimensions. In

a one-dimensional computer experiment using the iterative

reconstruction algorithm on a case known to have two solutions

(Figure I of Appendix B), the algorithm converged to one of the so-

lutions in about half of the trials and converged to the other solu-

tion in the other half of the trials, depending on the random number

sequence used as the initial input to the algorithm. Therefore, it

is believed that if there are multiple solutions, then the algorithm

is likely to find any one of them. For the case of complicated two-

dimensional objects on the other hand, the algorithm generally con-

verges to the object itself, and not to other solutions. This is an

indication that other solutions do not usually exist in the two-

dimensional case.

2.3 NEW METHODS FOR SUPPORT AND OBJECT RECONSTRUCTION

As discussed in more detail in Chapter 3 of this report (see also

Appendix D, Ref. 4), a new method was developed for reconstructing

the support of an object (the set of points at which it is nonzero)

from the support of its autocorrelation. In some instances, for ex-

ample to find the relative locations of a collection of point-like

stars, the object's support is the desired information. More gener-

ally, once the object's support is known, then the complete re-

construction of the object by the iterative method is simplified.

Several methods are shown of finding sets which contain all possible

support solutions. Particularly small and informative sets contain-

ing the solutions are given by the intersections of two translates

of the autocorrelation support. For the special case of convex ob--

jects, the intersection of three translates of the autocorrelation

support generates a family of solutions to the support of the object.

For the special case of an object consisting of a collection of

points satisfying certain nonredundancy conditions, the intersection

of three translates of the autocorrelation support generates a unique

15



SolutILon. In dddition, for these same objects, by taking the product

ot three translates of the autocorrelation function, one can recon-

stru(t the object itself in addition to reconstructing the support

ot the object.

1 .4 LUNCLUSIONS

All of the results noted above are encouraging and are further

inucation that nigh resolution imaging by combining the iterative

alqurLthm with stellar interferometry data is feasible. The pre-

li,nidry experience with astronomical data shows that although addi-

inoil problems exist with real-world data, the problems encountered

so tar can be overcome, and it is possible to reconstruct high-

reYolution images from such data. Fears that the Fourier modulus

ddtd might admit to multiple image solutions are largely unjustified.

rnt theory uf analytic functions predicts that a large class of ore-

dimensional functions are uniquely specified by their Fourier modu-

]is; il addition, for the more practical two-dimensional case it

appears that the vast majority of functions are uniquely determined

by the Fourier mOdUlUS. Finally, new methods were developed for re-

.nStructing the object's support from its autocorrelation's support,

ano even tor reconstructing the object itself by a very simple method

t'r the case of a collection of point-like stars.

16



3
RECONSTRUCTION OF THE SUPPORT OF AN OBJECT
FROM THE SUPPORT OF ITS AUTOCORRELATION

3.1 INTRODUCTION

In astronomy, X-ray crystallography and other disciplines one

often wishes to reconstruct an object from its autocorrelation or,

equivalently, from the modulus of its Fourier transform (i.e., the
5phase retrieval problem)5 . It is also useful to be able to re-

construct just the support of the object (the set of points over

which it is nonzero). In some cases, for example, to find the rla-

tive locations of a number of point-like stars, the object's support

is the desired information. In addition, once the object's support

is known, the reconstruction of the object by the iterative

method6  is simplified. Therefore, we are motivated to find a

quick way to determine the support of the object from the support of

its autocorrelation.

In the general case there may be many solutions for the object's

support given the autocorrelation support. In what follows a method

for generating sets containing all possible solutions is given. In

addition, for the special case of convex sets a method for generating

a family of support solutions is described. For the special case of

point-like objects this method is shown to yield a unique support

solution unless the vector separations of the points in the object

satisfy certain redundancy-type conditions. If instead of manipu-

lating the autocorrelation support one uses the autocorrelation

function, then for the same point-like objects one can reconstruct

the object itself. In the following, several lengthy proofs are

omitted for the sake of brevity.

5. See, for example, H.P. Baltes, ed., Inverse Source Problems in
Optics (Springer-Verlag, New York, 1978).

6. J.R. Fienup, "Reconstruction of an Object from the Modulus of
Its Fourier Transform," Opt. Lett. 3, 27 (1978); J.R. Fienup,
"Space Object Imaging Through the Turbulent Atmosphere," Opt.
Eng. 18, 529 (1979).

17



3.Z [)t INIIIUNS AND BACKGROUND

nuc results shown here apply to functions of dny number of di-

Iler-,1onis except where otherwise noted. For simplicity we consider

only real , norneyat ive functions. A function f(x) 0 O, where
N

EJk , ha support S, where S is the smallest closed set outside of

ii IL n the function is zero almost everywhere.

mhe dutucorrelation of f(x) is

trf (x) f(y) f(y + x) dV(y)(I

f. .. f(y) f(y - x) dV(y) (2)

N
whti' V is the volume measure on E The Fourier transform of the

dut)(_A 'rtL ion of f(x) is equal to the squared modulus of the

l-uerLr trauform of f(x). Note that the autocorrelation is

,itro.-) symmetric. It is most illuminating to interpret Eq. (2)

as i weighted sum of translated versions of f(x). That is, in the

irteyrand of Eq. (2a), f(y) acts as the weightiny factor for f(y +

,), which is f(x) translated by --y. It can be shown that the support

ot te autocorrelation ot f(x) is

yt: S

- - ix-y: x, y (3)

Note that A is symmetric:

-A A (4)

To illustrate the interpretation of an autocorrelation support, con-

sider the case of the two-dimensional support S shown in Figure ](a),

hdving the form of a triangle with vertices at points a, b, and c.

The autocorrelation support A can be thought of as being formed by

successively translating S so that each point in S is at the origin,

dnd taking the union of all these translates of S. Figure l(b)

shows three such translates, (S - a),(S - b), and (S - c). The rest

18



of A is tilled in, as shown in Figure 1(c), by including all (S - y)

such that y k S.

tt, are concerned with the following problem. Given a symmetric

set A IN tind sets S C LN which satisfy A = S - S.

t and 5) are equivalent,

S1 - S2  (5a)

it there t,yists a point v such that

S2 = V + 8S I  (5b)

= Iv + Ox : X E Sl (5c)

.hc.rt t = + I or - 1. From Eq. 3(b) it is easily seen that if S I

i, a sulution to S - S = A, and if S2 ~ S1, then S2 is also a

,,lution. It S I  is a solution and all other solutions are of the

tit-tit v + 6SI, then the solution is said to be unique and A is said

to be ananibiyuous; if there exist any nonequivalent solutions, then

tiie solution is nonunique and A is ambiguous.

Not all symmetric sets are necessarily autocorrelation supports.

for on-nuIl I sets A it follows from Eq. (3) that

0 E A (6)

I,5 A ecessdry condition for the existence of a solution. The fol-

lowing example shows that this is not a sufficient condition. As

shown in Figure 2, let A = 1(0, 0), (1, 0), (-1, 0), (0, 1), (0,

-])I. because of the points (0, 0), (1, 0), (-l, 0) a solution must

include two points separated by (1, 0). Similarly because of the

points (0, 0), (0, I), (0, -1) a solution must include two points

separated by (0, 1). Therefore, the solution must have at least

three distinct noncolinear points. Of the three possible pairings

of the three points, one has a separation along (1, 0), a second has

a separaticn along (U, 1), and the third pair of points must have a

diagonal separation. However, no diagonal terms appear in A, and

therefore there is no solution for A = S - S in this case.

19



S-b (b(C)

((b)

Figure 1. Autocorrelation Support. (a). Set S; (b) three of
the translates of S that make up A; (c) autocorrelation support

A = S-S.

(0,1)

Figure 2. A Symmetric Set that Is Not

an Autocorrelation Support
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A set X is convex if for all x, y c X,

tx + (I - t)y E X (7)

for all t E LO, 1]. The convex hull of a set X, denoted by c.hul(X)

is given by the smallest convex subset of EN containing X. Thus X

is convex if and only if X = c.hull(X). If S is convex, then A = S

- S is also convex. More generally,

c.hull(X - X) = c.hull(X) - c.hull(X) (8)

All convex symmetric sets A have at least one solution

S 1 A x/2 : x A (9)

Tne proof is as follows. Let u, v E 1/2 A. Then 2u E A, 2v c A and

-2v c A. Therefore,

u - v : - (2u) + (-2v) c A (10)

and so (1/2 A) - (1/2 A) C A. Now let v E A. Then v12 £ 1/2 A and

-v12 1/2 A. Therefore

v I I +
v T yv (PA) -(PA)

adu so A c (1/2 A) (1/2 A). Therefore

A = (1A) - (IA) (12

3.3 LUCATOR SETS

In many cases A is ambiguous, and it would be useful to define a

set that contains all possible solutions. A set L L EN is de-

fined as a locator set for A if for every closed set S C_ [N

satisfying A= S - S, some translate of S is a subset of L, i.e.,

there exists a vector v such that

v + S C L (13)

21



rt irrany wdyS to generate lcator sets. For example, for v :

* '. S S - A, and so A itself is a locator set. Naturally,

tit , i toe locator set, the more tightly it bounds the possible

i41 ,ri, an(] the more inforinative it is. It can be shown that a

1. 1 r I iq dt)r ,et than A is

L = A H (14)

,r,, ,1 au d uStd half -space with the origin on its boundary. A

,i rd] kr" ocatjr set can be shown to be

L =_P (15)

,, " !,i s ,iry N-dimenJional parallelopiped containing A.

,,rt i,,, t ,lar]y interesting locator set is given by the following

"s , s * WI t twoi) dutocorreldtiOn supports. If w c A, then

L = A '. (w + A) (16)

Lst for A. Note that L is symmetric about the point

Trit, )ruot thdt this is a lOcdtor set is as follows. Suppose S

- I, I - .') r e w £ A, there exist u, v E S such that w

(0.1 " 1 It', Z - v. Then z = s - v whei: s c S, z = s -v

,, , ', -+ (, v) s - u + w F A + w. Therefore, z A

1 ,rOily, the lust irnteresting (smallest) locator sets generated

*rl,in it intersecting two autocorreldtion supports are ob-

I 1 ,Ili 6> y ho, ,y j w ti) bu on the boundary of A. By choosing u if-

t.,t*'t poit-r w k A, a whole family if locator sets can be generated

. i ; L It'+ Itt l d

oIer + the set S shown in Figure 3(a), consisting of two balls

ji d by two thin rods, and its autocorreldtion support A = S - S

MWIt iojure 3(b). An example of a locator set 1/2 P is shown in

22



(()

(e) (f)

Figure 3. Locator Sets. (a) Set S; (b) A = S-S; (c) locator set
L = 1/2 P; (d) formation of L = Aq(w + A); (e) and (f) two other

members of the family of locator sets.
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iqiire 3 ); it does a good job of defining the approximate size of

), bA it is not suggestive of any of the details of its shape.

i Ilurt, jid) snows the generation of the locator set L = A () (w + A)

ftr a par'tiCular point w E A. Figure 3(e) and 3(f) show two other

,n ,mer o the family of locator sets generated with two other points

A. These locator sets gene-ated by intersecting two auto-

corfrelation supports are very suggestive of the shape of the solution

(or solutions). This is especially true if one realizes that any

solution must be contained within all of these locator sets. Unfor-

turiately, for the general case it is difficult to narrow down the

so lt ion any further: a way to combine the information from two or

riore uf tne famiily of locator sets has not been devised. However,

ds ,, II De shown in the sections that follow, for special classes of

sets much more can be done.

j.+ AUTULUkRELATION TRI-INTERSECTION FOR CONVEX SETS

For the special case of convex sets A, a family of solutions can

oc generated by a simple method. For the one-dimensional case the

rcts:Llt is trivial: a unique solutioi is given by S = 1/2 A, which is

just a segment of the line half the length of the lI- segment A.

AHT ,qaivalunt result for tne one-dimensional convex case is the

,, ]t i on

S = A C.. (w + A) (17)

.vitre 4 is on the boundary of A (at one end of the line segment A),

or inl syriibuIs w E a(A).

For tne two-dimensional convex case, we have the following re-

slt. Let A E2 be a closed convex symmetric set with non-null

interior, and let

w, a(A) and w2  E a(A) , a(wI  + A).
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Furthermore, let

B = A , (w I  + A) r (w2  + A). (19)

Then

A = B - B. (20)

The lengthy proof of this result is omitted for the sake of brevity.

Lxampie 2

Consider the set S shown in Figure 4(a), which is the convex hull

of the set shown in Figure 3(a). Its autocorrelation support A = S

- S Lwhich is the convex hull of Figure 3(b)] is shown in Figure

4(b). The parallelogram shown in Figure 3(c) is a locator set for

A. A member of the family of locator sets A r) (w + A) is shown by

the intersection of A and w + A in Figure 4(c). A member of the

fdmily of solutions B is shown by the intersection of the three sets

A r) (w I + A) n (w2 + A) in Figure 4(d). Two other examples of

b are shown in Figures 4(e) and 4(f).

3.5 THREE-DIMENSIONAL INTERSECTIONS OF CONVEX SETS

Fur convex sets, since in one dimension the intersection of two

sets, Eq. (17), results in the solution, and since in two dimensions

the intersection of three sets, Eq. (19), results in solutions, one

might hope that in three dimensions the set

C = A A (w1 + A) n (w2 + A) n (w3 + A) (21)

would be a solution to S - S = A, where w, E a(A), w2 E (A)F

a(w I + A), and w3 E a(A) A a(w, + A) nA (w2 + A). Unfortu-

nately, this is generally not the case.

A counter-example to C - C = A is the following. Consider S

equal to a sphere of diameter one, then A = S - S is a sphere of

radius one centered at the origin. Figures 5(a) and 5(b) show
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Figure 4. Autocorrelation Tni-Intersection Solutions for Convex Sets.
(a) Set S5; (b) A = S-S; (c) formation of locator set L =A n(w + A);
(d) formation of solution B =A ndw + A)n(w, + A); (e) and (f) two

other solutions f the fori B.
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(a)0

(d)

(C)

Figure 5. Sphere/Circle Example. (a) Set S; (b) A =S-S;
(c) 13 A n(w I + A)p(w 2 + A); (d) another solution to the

circile.
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(Laiu' <uts through the centers of S and A, respectively. F igure

', ows a planar cut through A , (wi  + A) t , (w2  + A)

t. 'oogh the three points, 0, wI and w2. A ( (wI  + A) r)

, v + A) has two vertices, one in front of the pldne of the page

40.1 11ie 1)ehind the plane of the page, both at distance one from the

rlt.er of each of the three intersecting spheres. Taking the inter-

st,.timn uf this with (w3 + A), which is centered at one of the two

vt!j1rtiis, gives us C, which is similar to a regular tetrahedron (it

hs Lie sae vertices) but having spherical surfaces of radius one

i place it the four plane faces of a tetrahedron. Looking for a

nvn;<.. at the tetrahedron T having the same vertices as C (i.e., the

.u.nv j. null of points 0, w I, w2, and w3 having edges of length

v. 'e see that l - T is a cuboctahedron, which has eight tri-

JvPi- laces and six square faces. Since T C C, T - T :I C - C.

Tn, ,urface ot C - C can be subdivided into twelve patches associated

trte twelve faces of the cuboctahedron. It can be shown that

thc ,1 jnt patches associated with the triangular faces coincide ex-

i-tly with the surface of the sphere A of radius one. However, the

,x patches corresponding to the square faces do not. For example,

t ri, lntdnL0 trul the origin to the center of each of those six

, , equal to tie distance between the centers of two opposing

"1 oy i . This distance can be shown to beV-3 -V-2/2 = 1.0249;

Lii i St , L - C oulges beyond the sphere by about 2.49 percent at

t , poimntS. Therefore, C - C A.

.C oNUbINAIIONS UF CONVEX SOLUTIONS

Solutions to convex A = S - S of the form B make up a family of

.9,1 4tins generally having an uncountable infinity of members, one

tor each w, E (A). Nevertheless, there May exist additional

i ,'ILiurn".
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AUditional solutions can be generated in the following way. If

S I and 2 are solutions to convex A = S - S, then

St tS1 + (1 - t)S2  (22)

is also a solution for 0- t 1 1. The proof of this result is as

tol lows

St - St = [tSI + (I - t)S2] - [tS l + (1 - t)S2]

= tsI - tS1 + (I - t)S2 - (1 - t)S2

(23)
= tA + (1 - t)A

=A

since A is convex.

If is a solution, then so is - S1. Then using t 1/2

a1u - S1  in Eq. (22), it is seen that

1 _1 1 1

Sl/2 7 S1 - = A (24)

is a solution, as was previously shown by Eq. (12).

'q. (22) can easily be generalized as follows. If S11 ...0

Sn are solutions for convex A, and if ti t n  0 and t

+ t + + t= 1, then

n
s = t si  ( )

i=l (5

is also a solution.

Example 3

Consider the two-dimensional convex set S shown in Figure 5(a),

consisting of a circle of diameter one. A = S - S, consisting of a

circle of radius one is shown in Figure 5(D), and a tri-intersection

solution B is shown as the intersection of three circles in Figure
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:(c). This solution is similar to an equilateral triangle but having

arcs of circles of radius one with centers at the opposite vertices

for edCh of the three sides. It can easily be seen that all other

solutions B generated by Eq. (19) are similar to the one shown in

Figure 5(c) except rotated in the plane. The circle of diameter one

shown in Figure 5(a) is not of this form, but it is also a solition

to A. As shown by Eq. (24), S = 1/2 A in Figure 5(a) can be gene-

rated uy applying Eq. (22), using Sl = - S2 = B and t = 1/2.

une ot a fa:Mily of additional solutions generated by Eq. (22) is

shown in Figure 5(d). It was generated using S1  1/2 A in Figure

5(a), S? B in Figure 5(c), and t = 1/2.

3./ THE AMBIGUITY OF CONVEX SETS

we now consider the question of uniqueness of convex solutions

of A = S - S for convex A. As mentioned earlier, 1/2 A is a solu-

tion. If all convex solutions are equivalent to S, then A is said

to ue convex-unambiguous. It was shown that in two dimensions one

can generate a family of solutions by Eq. (19), the member of the

tamily being determined by the choice of wI . Eq. (22) or (25) can

then be used to generate still more solutions. Therefore one would

ujppuse that convex sets A are generally convex-ambiguous. However,

it is also possible that all solutions generated by Eq. (19) are

, _Juivalent, in which case A would be convex-unambiguous.

In what follows it is shown that in two dimensions if A is a

paral lelogram then A is convex-unambiguous. Let A be a parallelo-

gram having vertices wl, - wI, w2 , and -w2. By Eq. (16) a

locator set for A is L = A n (w1 + A) since wI E A. It is eas-

ily seen that L = 1/2 wI + 112 A, and so L' = 1/2 A, which has

vertices 1/2 w1 , - 1/2 wl, 1/2 w2, - 1/2 w2 is a locator set

for A. Suppose A = S - S where S is convex. Then some translate of

5, call it S', is contained in L'. Since wI c A there exist u, v

S' such that w = u - v. Since S' C_ L', u, v E L' It follows
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that u = 112 wI and v = - 1/2 wI . Therefore, 1/2 wi E S' and

-11 w1 E S'. Similarly 1/2 w2 E S' and - 1/2 w2  S'.

Then, since S' is convex

L' c.hull W, - 1 S _ (26)

Therefore, S = L' = 1/2 A, and so S is unique among convex solutions.

It can also be shown that parallelograms are Lhe only two-

oimensional convex-unambiguous sets. Convex symmetric sets A C

[? that are not parallelograms can be shown to have infinitely

many nonequivalent solutions to A = S - S.

3.8 AUTUCORRELATION TRI-INTERSECTION FOR POINT-LIKE SETS

For the special case of certain point-like sets A, the solution

can be generated by a method similar to the one for convex sets. By

point-like sets we mean sets comprised of a collection of distinct

noncontiguous points. For example, a point-like function

N

f(x) = fn 6(x - xn) (27)

n=l

onsisting of N delta functions having amplitudes fn > 0, n -

N, would have point-like support

S = {xn : n = 1, ...., NI. (28)

The following result holds for any number of dimensions. Let S be a

point-like set and A = S - S. Let w, c A and w2 c A n (w, +

A), with 0 j wj I w2 j 0, and let

B = A (wI + A) n (w2 + A) (29)

Define the following Condition 1:
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If x1, x2, yl' Y2' zl' z2  S, x1  x2 and

X I x2 + Yl - Y2 1 - z2 = 0 (30)

t ni en

×I= Y 2 or z2' and x2  Y] or zI

It can be snown that if S satisfies Condition 1, then

B - S (31)

That is, 13 is the unique solution to A = S - S.

nother approach is as follows. Define Condition 2: if the set

GCA consists of three distinct points and if 0 E G and G - G 9 A,

then G is equivalent to a subset of S. Define Condition 3:

if X1 5 x2 ' Y2 6 S, xI f x2, and xI - x2 = Yl - Y2 ; then x I = Y1.

v nave the following two results. If S satisfies Condition 2, then

i is equivalent to a subset of B. It can also be shown that if S

satisfies Conditions 2 and 3, then S is equivalent to B; and S satis-

fies Conditions 2 and 3 if and only if it satisfies Condition 1.

Siicu it requires a special relationship between the points in S

ini order that Condition 1 not be satisfied, it is probable that for

lcomprised of -andomly located points, B is the unique solution to

A - - S. More will ue said about this later.

Lxaiple 4
Consider the point-like set S having 9 points shown in Figure

b(a). A = S - S shown in Figure 6(b) has 92 _ 9 + I = 73 points.

Intersecting A with a translate of itself using Eq. (16), a number

of oifferent locatur sets for A can be formed, two of which are shown

in Figures 6(c) and (d). (Any solution to A = S - S must have trans-

lates that are subsets of all the locator sets.) For this example,

for all allowable values of w, and w2 , B is found to be equiva-

lent to S, which is shown in Figure 6(a).
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Figure 6. Intersection of Sets Consisting of a Collection of
Points. (a) Set 5; (b) A S-Si (c) and (d) locators of the

form L = Afl(w + A).
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It can also be shown that even when Condition I is not satisfied

i t is sometimes possible to find solutions (and the solutions may

even be unique as it was in Example 5) by intersecting A with itself

tihrte or more times. However, when Condition I is not satisfied,

t~ien there is no guarantee that the solution is unique, and finding

s,']it ori is considerably more complicated than simply evaluating B

)y Lq. ( 9). Unfortunately, given A it is not possible to immedi-

Iaely determine whether Condition 1 is satisfied. A necessary con-

dition that Condition 1 (or Condition 3) be satisfied is that the

iumber of points in A can be expressed as N2 - N + 1 where N > 1

is dn integer.

3.9 RLLUNSTRUCTION OF POINT-LIKE OBJECTS

y a simple modification of the method described in the previous

,,rtion for reconstructing the support of a point-like object, it is

utten possible to reconstruct the object itself. The method is

analogous to using Eq. (29) to compute B, except that it deals with

prociucts of autocorrelation functions instead of intersections of

ant ucorrelation supports.

1uppose that the object is given by Eq. (27), consisting of N

delIta functions located at the distinct points xn having ampli-

tudes fn' n = , 2 ... , N. The positions xn are vectors in any

number of dimensions. The autocorrelation is

f*f(x) =/ f(y) f(y + x) dV(y)

N N
Tm fnfm6(X - x +xn (32)
n=l m=l

wnich can be expressed as

f*f(x) =(.. f2) 6(x) + fnf6(x - xm + xn (33)

\n=l n=l n4n
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which has N2  terms located at positions x xm - x n N of

which are at x = 0. That is, it has up to N - N + 1 distinct

terms.

At this point we would like to take the product of two such auto-

correlation functions; however, the product of two delta functions

is not well defineu. In order to overcome this problem, we define

the product of two delta functions as follows:

ab6(x - xl), x2  X I

LaS(x - x,)]Lb6(x -x2)] -

0 , x2 xI

N cowsiuer multiplying f *f(x) by f*f(x - x I + Xk), where

x - xk u lies within the support of f*f(x). The center of

the translated autocorrelation lies within the support of the un-

translateu autocorrelation. This gives the autocorrelation product

(all summations are from 1 to N unless otherwise noted)

Alk (X) Lf * f(x)]f * f(x -x + Xk)]

f6(x) + " _ fnf_6(x - xm +n
n n mnn (34a)

• - x + x)

f j 6(X - X + X - X + X(34b)n ' n in 'm III' 'i 1. k3

- ( f)flfk6(x + (:4nf'n)flfk6(x - xl+ Xk)
n

+ f f f 2 (x -x -x )I k ' in k
mjk,l

+ f f ' f 2 6(X - x + xn) + (O.T.)
I1k' nn

n=k, l
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,,ro (u. I . ) denotes "other terms" as wi I be (escri ed later. [As

,01, II l ot how [q. 34(b) follows trori Lq. 34(d), the fourth term

I .irises trol the product. of the suconld turll of the f Irst

I, 'rd at Ion with the second term of the secold aiUtocorre lat ior,

I n - n, arid il I 
= k.j From another way of expressing Eq.

, N N N
f" " " f I fx + x)

riS iil l l =i ii=
ri ni n 111' 1 =

X - X11 + Xg XI + Xk) (34C)

I set-n tnat teris survive at points

X =n - xn = xin - x 1n + x - xk (35)

rhon tr' snnown in Eq. 34(b) dll necessarily appear. In addition,

tr,2r ttrms iWay appear, as indicated by "+ (0.T.)". The existence

,,tir teraes depends on the presence of special relationships between

tote .ndilIates x n allowing Eq. (35) to be satisfied. There being

, idditionial terms is equivalent to Condition 1 (described in the

pk,, ,4s section) being satisfied. If the x were independentVI

d-lJinic variables, then the chance of having additional surviving

terms would be small, and we would have (U.T.) = 0.

-ombining Eq. (27) with 34(b), the autocorrelation product can

tie expressed as

APIk(X) = flfk[f2(x + xk) + f 2 (-x + x,)]

f flfkL6(x) + 6(x - xI + xk)J + (0.T.) (36)

Therefore, translates of the supports of both f(x) and f(-x) are

(,Ontaitled within the support of APlk(x). This can also be seen

troir the fact that by Eq. (16) the support of APlk(x) is a locator

set.
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I'ivud,,d in the support of APlk(x) are points xn - xk and

x, , .. , N. Therefore the center of f*f(x -

P* 1 1, k is within the support of AP1k(x). If

u.. U, thrie the product of the three autocorrelations is

Lt *t( ).Lf*f (x - x I + Xk].[f*f(x - xl, + k)]

M ;4)k(x) Lf *f(x - x, + Xk) ]

I tlk [( if 26x) + (zf )&X - x + X

+ 1 f 2 ~ 6( x + x f -( x +

7 n r1 1n k) + n i n

ft, {n f fI6(x - xn + Xk)

(Zf'[f 6(X)+ f36(x - + X )+ tl6(x - xl +Xk

ftk ,, It. I ')+(kfnf6X

+ ( f t2 0ti( x ) + 6(x -) + ( k + t6 ( x - xp + x

,[t3(x 
+(37a)

1htit is, the support of tne product of three autocorrelations has

tne siie support as f(x + xk), as was shown earlier in connection

with Lq. (29), since b is just the support of the product of three
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sMAh dutocorrelation functions. Furthermore, except at three points

Lne product is proportional to the cube of t(x + xk).

The VaJLA'S at all points can be determined as follows: First,

fn = f *f(0) D (3,

i,, so that factor can be divided out from the last three terms

ot Lq. Vk(A). Second, let the coefficients of those three terms in

Lq. 3ia) e (witn Zf' divided out)
n

A = D- I AP (x ) = f f f l (39a)IkI kk 1I

C = D-  APlkl,k(XI - Xk) = fk (39c)

%.,I, f i j, we y eL

f= ( (40a)

I1 = \AQ 0

fkf1 fli,  (ABC) 1/4  (40o)

Irle remaining fn s, for n j k, 1, 1' can then be computed by di-

vidliny Eq. 31(a) ly f kfIf}, and then taking the cube root:

f AP I 'K(xn-X k) (40e)
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By tnis method f(x) is reconstructed exactly to within a translation,

a; Iony as (0.T.) = 0.

III pertorminy these calculations, had we chosen a translation of

tie tor-I (xI  - xk,), k' J k,l instead of (x1, - Xk), then

the result would have been similar, except a translate of f(-x) would

have uekn reconstructed instead of a translate of f(x). If (O.T.) *

U, that is, it Condition I is not satisfied, then additional terms

apper tinat make the analysis much more complicated and may prevent

tie reconstruction of f(x).

Various iouit catIons to this reconstruction method are possible.

For example, the product of two autocorrelation products APlk(x)

KP>' (x) is proportional to f 4(x + xk) except at three

poiriLs. Ariotier example is to define the autocorrelation support

t inc. t I of] as

N

A(x) = 6(x) + L Z 6(x - x + x ) (41)
=l min m n

whinih is just c binary-valued version of Eq. (33). Then the product

ut the autocorrelation function with two properly translated auto-

leOruldtion support functions is proportional to a translate of f(x),

et!Lit dt. a sinyle point which can be determined by a few extra sim-

! , rriv 11(J at Eq. (3/), it was assumed that the other terms

(u.F.) = U, or equivalently that Condition I be satisfied. The terms

Mt IUCd inI Eqs. 34(b) and (37) are those that necessarily arise by

SI stylilly

x Xn Xm' - Xn + xI - xk (42)

trivildly, for exampl, for In = n, i' = k, and n' = 1. The other

teris are those that satisfy Eq. (42) by chance, that is, those that

aris. III audition to those that (trivially) arise necessarily. These

Other terms require a special relationship between the points in S,

di(J W(Ul] not be expected to occur if the points in S are randomly
Ni t.ributeo in some region of E
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These results, with some modifications, can also be extended to

the case of an object having support on a number of disjoint islands

naving diameters small compared with their separations (as opposed

to the support consisting of isolated mathematical points). How-

ever, as the number of islands increases and as the ratio of the

Jiameters ot the islands to their separations increases, the prob-

ability of satisfying a condition analogous to Condition I decreases.
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A . .. ., 'a I r aiir) i r r iqht ,'', t i tr ibrit ion oit te 'tie- t arn Sm( i
- ' ,, t itr, ' t: t o cnmn ji, r o f rts o f atmosphere ann the telescope for

.. rc. H. rJrdir tw
c

S t twlrim.r oinrnaIl ve' rnr and * denotes r'0nvr hr-
'it.3 ttIat thef ''vpo'niio I ime is oI ort utroogh to "freeze" the atmosphere and

w j' ' 1, diii I', iter. d Te Fourrior trars fnrn orf c;t st hort-exp,,,ire iman''

21, '_ 2,ml ) n-vp I (i2 tx) I dx (,j)

I", q jiI lot ters wll I Meont, the ,rnplex tour lt transform, r0f the Corr e-
4, '. r4 ,w',- . t" l rtt r ,, a,,d tht cuo Iiin.1te E is referre f,,l ' a spat iai frequency.

*. it-r', : ,, .,, : : . , I',t m,'m, I, ni t 2 rt I '. mine' pniwfr 'q2- r t turn I i' , nim(o t o' :

M F M

m.I m !
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'' MA I ti ) I .in t i h, A in i I f p e t Il' I (I f t'P I i s

", A 1 M11 -i ind it a"ii:bini '.ilminpo J App rrimij tli 'II t " Mi

i n tn'. i tn i o o y on An' K O O a mni n l p w r t r q tm qp -:,i J, I~ ',
t n iii '. tiw- i It, t, im e rr rh t , ,I i l~ji,r tie v r ]n~'

A ' ' r A i '' t nn M I i i t. ' I~e r ii oh ) nn r mt ri q

t in r' lvf r it f J f ii a I i n r r Yn s IAf i n f '
in i ti i,te ii Iii mr en o o livti " i'il "Jil v~ P Vi~

irnA I -n- r n In nAi iti n f , n f - f- ir

jjir I v i r .e e thin n o ,lpI n ti a h

fi t,-: f.. I r , un- n' i A I ienri'r i"Oulnj, t hv ri knen lo, tht' f Ire
i I I V P t~vi ain t ionn. ThF reimnntra'. n tiir nbem nj~i qf

r - j P Wi t thi it K' c0:1 istint w Fe thi m'nu'ri 0 Finer i r moduli', data.

F t A i t-rt ji a, m ti ht ii A, pi t in F i qur" I , It eon' i te r

START

Initial Estimate

Ii U

Detecit i iatives. Satisfy Measured
friNuIptFourier Modulus IFl
Firm i \~ nputModulus

Figure 1, Iterative processing overview.

";I' ; '.- e, NOx (which we uulycos oh

:''~~~ , riImeli; (2) in the Fourier domAin, the mess reeI~ ' " ,,I F'enrjer mudeluq, and the computed phase is
ral- i rifed, yieln inq 0'lr l x); a d (

- Inn etn "Mit-ijnmain cnoqtraints by gi ( xI)
;t,a.' i , in, r-'qwjide rror is redurle tin a qmall value can-

Irr tv- ;jp I,- P- W'.' t qf -11, i memm'ured Fourier modulus data. The mean-

(1]4)

f li xl d

rite r -e i i no I na, ai I I tnt, it which q' (x) violates the oh (cut domain con-
tt'e.t. W '''-,- i nt i ~ 'Ittiv o '' jqihly wipre it exceed~ an a priori knewn rtlametrr).

- ii nGjif-rnt ri-tr''. IW tnn i~ntsaiiw n](x) have proven successful. For the results

{n (, x.n~() xI f
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, - T I , t ill,.' .li'r,. t01' I *i ' im trIi V woo y it w;, I o I,

S . ! ' I u . t H I IIIT , , I f r f /l t lie i t l

.'., , i it ' i I Au , r I l ii 'edo r A ny Ir r y i/4 i rraPyM ,rllt I , i",i
* I I I .I I tt -,,l .,, ' L I I " ( f o I i[Ca0 tllli1 M ,n ,fur i nn I

t I tT I W t I F I I' t i1 tho i f{ 9 y 4t ilq AP IYOHjltT ii rt p IW t vnflinr lf .

1 tI V II iv noe (2 wr i can e fro m th Steir IIom 7h r1y-
o II I I . I y 1 41 I ' .I '11 I, lrt , na n v t h i o n. I y -

S. ... - ,,, "v t !, t I i r ,nd t i, it K 1 eomod that any rIle ' hnrt

. . ,' .: T t , e O t l lh ,v in any one pixel are most pixels r.eord

ff1'I n I o nV tt, - q i f NOan0o -c t on , 1 amaora ut 4
.r ,, in imoq. ron ist irq of oneo (where above the thresh-

:i .ite,, Mtt a , lu , of e il tn , itrr rreiat ln'4 i-,
5 t I 'rwd . >n t rum ' rmpaLrd ; th' Foirier transfllrm of th stmedI

I" ., t ]jrn, 
r 

h, io , , rt'' I iin,'n (trali-latld f( m;ke' the ir cvntroL: .
n i n" t o a Ir aret pi x I t an the ,inm of the centrniee ! images is compAtel.

i i "F'2 1 , . ', 1iXt ; ,,P, t , 3HX maqc it irat I f ft h imar , th jin a 'r,

I it I I ,. , p - x,'r rx'l , ,rq earh line, and iq about 0.017 arc-4ec

n , t 1 it in ttrel lim-", nnr I ative tr, th .ll nqfif -llne aiWor,-
S r , , ,,'] LI I I ,, the , i1,' k' h f that. The data i ( ittiz ,d in 2% x 2561

e . . (; ' 1 , I 21 i t , mmet piw.r rt iiJil of jO n lnrl ,rlv I>
7, ,, 'j, 1' ' , wo t.A n i1 t hnX maqni r ic at ion (0.61 arc-ser per pixel 4 4.7 x
-'" A ' r <, let r. lt ti al,,I 9ereteree at 7to em. The nale in thI,
r. f . .I-8 r dd , Y ,) F r 1 meters (of telescope aperture)

S , i oat r fr t . 5 m ters, the highest spitial frequency passed
S ., , ,' . : ,T .. p '/pi x) 37 pi, elq from toro frequ"',y. Ideally

r ,r i , )i , tn simmed power spe'truim of an unresolved
, , v 1 ,, I ,. teleW scope aptr tor (that M1F- is the a tel or-

, : t,' t.i ;Pi fw,, , 2r . ,imirq a cirrular ip, rtur-, a rut throuqh

- -" - ; ,' : I it r h, v, , r,el, ne ha 1nd hr t r 13 t, e zero t37yrlt pixel 7.
S , : ,, a , ,r, prt r Atr t ,of the iriren vd star shown in F iqui e 2 is very far

' 0 * ;no ' t , r t- rum. First, the p, ' - le Mtf t , m n-
in orno ti mr toit I tq 13), 12(p5 vry rapidly for the very low spat ial fre-

I
rr 

, ',* i ' t-" r his rt - lt' in the ,pikc-like tietah vior of toe

.,rl, p-, tIam t K, v -r y  Iow 5pat ial firt uenr ie . Beyond the very low Seatial-
, r, , I MTl ' is m r, f'rtt r t e,,vel ani lireasv clowly . Secont,

;on i ,,. ,r.',it, inr, , ot ler thitllj , a n i,: hlias term in the summed power qpec-
t 1 ,& i I 2 1 , II - : r, fm , n mirat,, in tt hii ier spatial firequenciesi. Beyond a

r'/ L x,,I n r, the .,mml power spe trum, no ,ignal energy exists -- it is purely
I irmir; to, mv,' p wer npp- tlum thati little useful information ca' t

rmi r',',at iou is mnade for hi"th nf these two effects.

I- , t J err 111.J ''a , tieo t ion ti jn-,f'r funrt ion

w n wou-il orlinarily eliminate the riiSi t ies term simply by suhtractinq a constant from
t, ow. T [,- t It m

l 
, 1 . nowrvpi , ,, qe , from Fiqurp 2, the noise tia- tore,

by it 'l W f ei'yl i pixr 1 5 1, in not La constant in this case. This results from
,, ,,t t, f p[,on, , t-,,t inn! drdt thi nsh" dI~i"U, i A;nqlit photonl nrmpt tMen' resul t,, r in m re,

t," ,, ii' ro lidil (I, depntnnq upon the threshold level and the size of the
, ,t I ]i ;n, W ,, tirq from too' W an, r inftpn ,i f ier, lIt[,[e I shon() the autnrnrrelations

i, t,. it ilo l ,qItlartrd transfer functions (if some oF the various patterns of ones re-

.i1' t -I. r .A ,iri l',: pht oni . liA t
, patte-rn i', in effort, the impulse repon-e of the de-
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Table 1. Event detection data: individual
impulse responses, their auto correlations.

and their power spectra.

DFTI CTION AC OF Im.rF.CTION
IMPULSE IMPUL.SE TRANSFER

RESPONSE RESPONSF FUNCTIONI

ELI Mi12i1 2 -2co&42 7T u/N)

2 + 2cos2 lr v/N)

ITITI I 112 3 +4cos42ir u/N)+ 2cos(
4
r u/N)

3 -2cos(2r u/N)

1+ 2cos42r v/N)E+ 2cos [21r(u+v)/N]

PII XELS

Figure 2. Summed power spectrum of an un-
resolved star (linear scale).
The middle and upper curves are
the same as the lower curve, ex-
cept have lOX and 1OOX vertical
scales, respectively.

t, n i, 4ystum; an in any one imago, several different patterns may appear. That is, this
,Tpo~lve resp, r r va ry from Phnft n to photn within the same image. Assuming a sparse
pn !it inin Lkf r toarI S within earn image, it can be shown that the net squared transfer

t;o=, 1,! Up te r,, Pti uf photonr-produ pd patterns within an image, is given by a
heigntrl sum uf the individual squared transfer functions of the individual patterns. We
r-f,-i tv this w iqht.n qum a4 thr detertion transfer function squared (OTF

2
).

ar a m, .- tp for the jrij- hias torm by the following steps
12

. (1) Over the
wla'ial fr'qunr ie abuve the teleecope cut-off, perform a two-dimensional least-squares

fit t w , nin0 t i nvhVia squared trannFpr Functions (some ef wh!ch are shown in
T 'r 1 I) t t * 'mmE pL war speetrum. by this, the PTF

2  
is determined. (2) Compensate

tF ,f- .t I. tn,- hTF" by lividinq the aumme, power spectrum by the DTF
2  

(for all spa-
*ili frrqa-'jPn ) Hy this, the noise bias term is made a constant. (3) Subtract from
t- -e' a,' ( 'Tme1 power SpCt [um t constant noise bias term. This DTF

2

irna n lne hia cmpensation are demonstrateC in Figures 3 and 4 for the binary star system
; , I . M in case, the magnification wi; 5OX and the wavelength was 750 nm (10 nm

pe tr al Mao mwilth) and so the telescope cut-off is at a spatial frequency of 74 pixels.
Ki, ,adt -t resit-'! from poweI-spectrum averaing of 1820 short exposure images contain-
irnr ,: t-tal of -in ut 2.4 x i05  photons.

In tip at', ( re ation domain, the noise bias term results in a spike at the (0, 0)
nn.rdHat,, and the btF

2 
causes the spike to be npread over a few pixels about (0, 0).

~r~pensst inn for the DTFL causes the spike to collapse to a delta-function at (0, 0).
Mhen the subtraction of the noise bias In the Fourier domain removes the delta-function at
(U, 0, in the autucorrelation.

Morp qen-rally, thP functional form of the DTF
2 is heavily dependent on the manner in

w( iuh the images are detected and should he modified accordino to the characteristics of
t4- Jt- ion hardware used.

TrV '-he, 1: MTF2

1 rmpnstion for the speckle MTF 2 
would ordinarily he ac'nmplished by dividinn the

%. rm,.1 prwer spec t rum by the summeo power sprt rum ot a reference ,tar , 
Both power

'p,, trd .hould first he corrected for the DTF
2  

and the nnise bias term.
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Figure 4. (A)-(C) Two dimiensional view of

t, () Mddl cuve rw sm- f () .Note: the residual

Ci-, imnd power spec trum (i- off- frerut'cli vIilibl1 in

.::We hv ic, TF- (C) lwrtis al o in -(C) becauseoui

u r Uc r wit h noise b ias d u c t ic d~nami raco the
r ceddia

St I t

~~r tr U -

t m tn h i T in

V t 1

iv z r W o jV4 1

W 22

arItil 12 r~ 2ir

t I t1

m grnr or, tri2'
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PPIIS P LS

Figure 5. Worden subtract method on an unresolved star (low spatial
frequencies). (A) upper curve: surmmed power spectrum; low-
er curve: power spectrum of the sum of the centroided im-
ages; (B) upper curve: summned power spectrum (note expanded
vertical scale); lower curve: summed power spectrum minus
the power spectrum of the sum of the centroided images;
(C) same as (B), except a smaller percentage of the power
spectrum of the sum of the centroided images was subtracted.

q r, , w-.ic , would P," tru, fqr objects of diameter only a small fraction of an arc-sec),
* ~ ~ ~ ~ .m - p, :' " ,mn , D w.-r 1'o "t raJm in that reuinn by a constant . The constant &< chosen

t :, . ,- 1 , ,,t with the value f t the summed Power spectrum in the region just beyond the
.. , . - .,,dri-! 'gi<. A- in to! C , of the Worden subtract method, this method di.e,
• r [' t I-" r LF min Pl -f i elQ"e c higlh r-f'requency region% of the speckle MTF2;

• ,., ,r, a,. r,,t*,- ,,,flier, tr. Apm l T"
2  

is reasonably well behaved for those spatial
fr,.qin nn,:i' .r( .rr tiin fn.r the very low spatial frequencies corrects For the greatest

'- ; '!. it liPp .N O Ih,t n. d1mYG P, -. r q PWt t raJm to C~rl e:t f~l the' speckle MTF 2  
is

:- ,n . r.aI ve1 in, W os~re F fur th,- ninary M. 941635 for which reFerence star data was not
-. 11atler. 1, (wra: r t.- inr [tshp tb op ,,1la y nf the assumpt ion that the Fourier modulu,

!. r Jrt- n.qu r,, the powe:r spec'trum) is constant for very low spatial frequencir.s, the DTF
A" ' ,.,.- k-wrq- ,rrert~d fun. ,r modu]us wan divided by the MTF due' to the telescope apar-
t ,r, (anicrh wdn approx~imated by the MTF due to a circular aperture of" diameter 2.3 meters).
P I II ipt ! A q'app of tr, f r i-r l us data is due to the A fferenre in scalp factors
i" thC two on~inn, an nitr arlir. Within the low frequency region, wherever the
i r,[ r m.Ou u 5,Wc den trr,ld value, it was rlipped ts that thrshold value. The
,,t a' multiplied by thcure powe tr the to arrive at our Final estimate of

t ; a ,r i, rnoda;, o (A ) uper incudinq the telescnpe s tF. In the praces ofd multiply-
ing hark it the telescope MrF, the residual nise beyond the telescope cut-oFF Frequency

(C) ,,t tse xe ctro.

lMdse u recsu nst ruction reultsb

TP Fourier modulus estimate shown in Figure 6(d) was truncated to a 128 128 array,
i t to I nav e c.omputationr time in the iterative reconstructior. This caused a o.light
trunc at iNo h the highest spatial Frequencies alonq the horizontal dimension of Fig-
of- v.(d). ' 44165 was re n strurth u finc the iterative method, and the imaq,e resultin
from two fterent celections of the e l ptial fretuonc algorithm are shown in Fig-
Iurns ?(a) anr (), respectively. [he rms error F was reduced to about p.c5 For the
puJrpose o:f d]isplay, a (sin x)/x interpolatin as performed on the images of Figure 7 in
nrin t", inr ea r the sampling rate acrosis the image. I order th qft an indication of
the '.n.tivity of the method to the clipping threshold level described in the previoes
,- 11",, t,; rlipping wan dcne over .qaJn datin d 33% u etater thresh ld value (which is
trily qrnater than the optimum threshold) Two imaqes rreonstructed from the resltinq

For .mcd ul tq e timat are shown in Fit re 7( c) and (d) Half the time, the iterative
In Frurtier mluqrithm produces an image rotated by waOt duete tohe anh2rnt 2-fld am-
uiqity .f th Fh etprilr mf glh o nt d s f data.•
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FtCle i(pp itt, to compenisate f or the 1. R1 'orT-I I eos rt Lted itiMait) oI0F SAO)
Tue kit 1I (for ''seemn,"') for '.6 sttx)
he h inr SAO 01j61 (A) F-our-

h ) 1l)lj1 1 00 1U 1 ie'r edl to; UC 't iIS,I t L' d

Iivii'onl h e, no ils evidt'tt to'T
'P il tncqucncic'-. ,ibev tiht

tc Ic <Cope Cot ft I nqoecv )
iiC) clippini ot thc low spit i'ii
I r-quenc ies I D) Fout~LI ue ' Idous

L i:.te obtaine 'I v p0 t to, 1' lCk
InI he tcleSCOC XTF

mrq r

r0 1

F'n' t' t t I['
TI ' ('I IN'

If ; I i j v ior itl I ar i f9r Orv'meort Vt T ' '-f tf IN tr

tr ye i rh m ilFler f h r ri a r ps rt' m p r~ r n' f(

r i r, t't< '' 'Ist i I'7

hi ~ ~ ~ ~ ir h t- n it o- fn'I in "i i I -i' fl ; is

ti ril I jJ rI F,4 r Cl i t i a t, ' ' 1 I
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SHASE RETRIEVAL FOR FUNCTIONS WITH
DISCONNECTED SUPPORT

ny
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J.R. Fienup

Abstract

Tre n iqueness )f solutions to the phase retrieval problem is
;xolorec Jsing tne theory of analytic functions. It is shown that
* 3 1 inction or its autocorrelation satisfy certain disconnection
:)nlit ions, then the solution is unambiguous unless the separated

oarts of the function are related to one another in a special way.
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ir t- li f-,r.V- i s pcr t, I. f j sSi~ m~

-I,
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)t (-)mpjct i f i t is, contained in some

71 tne :'ywplex plane. if wr f then w is its

is th?, space of ajl 1 complex-valueo

K- .mi'.IV - i.fltins on E withi compact support.

)rnvol,-itiwin of f anoi q is -iven by

t in tni hns c, T is also in Z ) e

- , utocorrp I dt Ton of r is civen tcy

i'm ~ s ~ien :

- ~ o (wY C" x Wc(

~ ~' cc ~ec anotetne Laplace transtcrms of the

*re, <ojrrvsoonoing lower cast letters. :f F is

- ~ elrc cv~*il =F( Tf F is the

-n is tnie L3place trnfr q . Also,

jr h ~ ,ten the Lapljce trinsform of

''~' ~ ~ r _ .~1( tr~nstorm )t auto(f) =f *f

n jr L, tne ftjnct ion - s eic

t e 'A sr r - e

A W~~~ - ~~~i~~Fl ~i r--a ';
7 CY



D w: Fm(w) >O, nFF*(W) > 0 and w 4 0

{. FW) F()1

an (I B are sets,

" = : A and xjB

f a , B - , then

3 B - b: acA and bEB

s . e complement of A in .

.- a and c are real numoers, the functions f(x), f(x + a)e i c and

ale all nave the same Fourier rodulus. If these are the only

i:tmons with that Fourier modulus, then f(x) is said to be unique

jr -' Fourier modulus is said to he unambiguous. Otherwise, f is

,r-inique ind its Fourier modulus is ambiguous. if

g(x) = f(x + a)e or g(x) = f(x + a)e

Sen r 0i ( are equivalent or in symbols, f - g.

. amoles )f %on-6niqueness

a positive integer and A l,?, ., N}. Let ,B oe

a.. :set of A and = A \ 3.

eo rem Let bn, n = 1 . ., N, and .n oe qiven cnmolex
n

r'A, r and let c and , n = 0, 1, . .. N, be detined by

N N

(x 7IC - )n . n n

n1l n=O
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Z x nn

B~ nn=

-4 '- n arD trary fhnct ion in L( a r.-al number,
0

N

n (

' " an~rtOri z~.' a.: j~e 'SJ,( DI/ ErUCK 3nG 3.od n

Otflprwise

+ 3 x 6 + 5x + ?

x + 7X 3x-
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nix) = tlx) + 7ffx - 4) + 3f!,x - )

~en, b heorem 1, IG(u) =H(u) V uE I{ (see igure 1).

.n tnis example, the two functions are quite similar in appear-

:n particular, they nave the same support. In a particular

p i "in, it vould pronably oe difficult to rule out either one

ti. e,-, qnt s) . ion on the basis of a priori information.

: _2 _ei t -e .s in example 1. Iow we use

I , - -1 3xx + ) - 8 + 2x 3 x ' 2x"

'- l : - x ) + 7 '- 4x .

= fx + 2+ (x - ) + 3fIx - 8) + ?)fIx - 1)

, = df(x) + 7f(x - 41 + af(x - 12)

71. n, y Theorem 1, G(u) = '(u u .

-FLrb- rows tnat, r like the situaton i n Examnle 1, tn

* ,,,_ ve l flerent supports.

woc t,eoren rives another metnon sor generating exam-

-, i8 ,la

ii = - i *

ii. = f * 9.
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-'Tple S I in.2cld ' I have been obtainedl by using Theorem 2. In

r ' I, 'heoremn is useful in generating examples of non-uniqueness

vn ii LDutri -nctions are positive because if f and a are positive,
n Lj ~n n2 * (Notp : Theorem 2 also holds for functions

r, m. o r e~r va r ables.)

,Ies ,t jnlQkeness

i. re presented in th is sectioun out of loqlicali

* r npeee in tne iiscussion of examples of unique

UGs (see iopen(17x) use Corollary 3 to heorem8

- ~ c neoren 3, 3 f~jnction f is jnique i f ras no

-et ;e as in Examples I and 2. ThenII si n w for w # 0
w

-2 for w = 0.

ru nun-real zeroes and therefore f is unique.

1cw-no *fieoremn gives a method for aenerating more examples

I-C I'nl: -Pt TiKJ be unique and let bn be complex Tnur-

K ,n- IN. . '-et c n, In -0, 1 . n~ e

o n n n
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= ,C f( -x n

n=O

wn rt 1', d real number. Then Q is unique.

.orc ,ary: If f is unique and

N

g(x L- f(x - Bn)

n=O

te, c is unique.

.xamplI 4: Let f be as in the previous examples and let

N

g(x) = Tf(x - 4n).

n=O

ner., n the corollary to Theorem 3, g is unique (see Fioure 3).

Another method for generating examples of uniqueness is given by

tre tn.lov.ino theorem.

)eorer £ if f, g L ), f is unique and G has no non-

real zeroes, then f * q is unique.

Example 4: Let f be as in the orevious examples and let o f w f.
nen., Ov Theorem 4, a is unique (see Figure 4).

Factorization; of F2 2

Let fL ( ) Then auto(f) = f f f L ( IA ) and it follows
0 0

from the Paley--weiner Theorem ([2], p. 103) that both F and FF* are

entire functions of exponential type. Since FF* is entire, D(F) (see

Stetion ) is countable. Let its elements be numbered
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n(F w .- I , . . ..

Such that {n n 1 is a non-decreasing sequence. The follovinq

n=l

factorization is essentially due to Titchmarsh (3], p. 285, Theorem

VI). (Note: In [3], Titchmarsh defines the Laplace transform as

F(w) = f(x) ew x  cx

as opposed to our

F(w) = ff(x) e- ix dx.

'nerefore, in using his results, appropriate adjustments must be

ma e.)

Thecrem 5: we have

]F l m - i cr w n

= mT F(m)(O)wm e 171 (I- -

wvere R = 2 nF(O ) and the infinite product is conditionally

converaent.

Tnis particular form of factorization of F is chosen to facili-

tate "zero flipping" arguments which will be used later.

in the sequel, we will also need the following theorer.

Theorem 6: If 6 is an inteaer-valued function on f D 0 < 6(V) <

- wc T \ and 0 e e(u) < 2nF(u) i uc , tnen tne infinite product

61
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8 (w n

w n

n=l L n

is asolutely convergent V wc .

The next theorem has to do witn "flipping zeroes." More %ill De

sago aboot this in the next section.

Theorem 7: Let fEL ( )and be the distinct non-real

zeroes of F. Let s be an inteoer-valued function on (C 0 < B wv < F (w

S:ir \ C1 and 0 < B(u) < 2nF(u) for uE 1 . Let

B(W )

G(w) = F(w) w

arc, let g be the inverse transform of G. Then G(u)' = F(u) for
d grL( ) an a

I(g) = 1(f).

6. Functions with Disconnected Support

In tnis section, it is shown that the probability of uniqueness

is much higher for functions whose supports satisfy certain discon-

ntctedness conditions.

Let ln' n = 1, . . ., N, be a sequence of disjoint closee inter-

vals satisfyino

6.1) (in - Im) q) (Ij - =

for j # and <n, m> * <j, k> (where <, > denotes ordered pair).

Let
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N
A= LI

n=l

Ce t f , cL - ( I N' s a t i s f y

S(f) C: A and S(g) C A

aric let

f(x) for xEI n

O otherwise

Cif 10

ng(x) for xEI
gn(x) =

O otherwise

tor r 1 . . .. N. Finally, let

N

B = q Z(Fn)

n=l

Ae assume here that fn 0, n = 1, . -, N.

Tneorem 8: Let f, g, fn$ and qn be as described aove. jF(u)=

IG(u'I V uc V iff 3 a real number e and an integer-valued function

definec on T with 0 < 4(z) < min In F (z)] [nzc ano
Il<n< N n

0 < ,(u) < 2 min LnF(u)] for uE E such that if
l<n<N n

S-w Q(z)

O(W) 

ZU
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ter tot, N 9

S(C-c q)w6n =e T Q(W)Fn(

nn

an n c for n = I ,

aror h: =real , mostr als be the ase th o Thore t c

*! ' i --1ou i al gis al w )Fn h c s t a 6FrWhs)

w r-,i:~r tnt tDj Inwina result:

n- a :f E , then'F(u) = G(u) u 13iff f - C.

n Eates states a similar result but with too weak a hypoth-

, atrc tc s tron c a concIus ion. (See both the discussion imme-

"it&e foillinc ana tf e discussion following Corollary 3 to
ero tn realt shoul bte noteC that Corollary oes ot oe ifi

is r rel assuflec that tre I are disjoint. To see this, let f, c

ard r, up e rec as in Example 1. Let

-c.5, 0.5], Ea [4.5, 5.5 and I = r7 . M].

,et q ana r, ila- te roles of f and a in Corollary 1. Then 7(

for r, = i, ?, anc hence B = 0. Also, 6(u) = H(u) V uc 1 but

u and h are not equivalent.

By setting N = I in Theorem 8, we obtain the basic "zero-

flipping" result of Hofstetter and Walther.
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"oroillary (Hofstetter Q5j - waltner E6 ): F(ul = M(u)

V uE I itf ] a real number E and an inteqer-valuec function a de-

firie on Z(F) with 0 <_ ((z) < nF(z) -V z(:Z(F) such, tnat

g(w) = e i e q F_(_

Flipping all the non-real zeroes of F yields the following

relations:

~enma 1:

e z)

F '(0) zcZ(F) 1l - j

c F ( Z

F(m)(O) Lf(z )
rI C

-' " , . (C,;

Sirce F' is tne Laplace transform of Z ana c is equivalent to f,

we ootain:

Corollary 3: The folowinq are equivalent:

1. F(u) is urambiquouS.

2. F(w) has no non-real zeroes or one non-real zero of order 1.

F(w)F*(w) has no nor-real zeroes or two non-real zeroes of

order I.
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orel ,ary 1 sufTers from tne arawback that uotr f ar, G must he
N

St(' dVti tneir supports contained in A = -or tnisn

n=1

,-.-a l,* it C annot be concluded that f is unique. Tne necessity cf

t' s canc' t car. . seen from the following. Let f, g and h be as

IT. ample . t r, play tne role of toe function f in

, . (I L

In T satIsfV th.t s rd': d r cor',tnPr L..et h be theL n
S ,'Ir of n to n , ' er - = t, ar, d trerefore

. - u) = iG(u) - c c are r,.Kt equivalent.

-. . * ,r , t unique. A sirrIlar reSuLt oc-u rs in tne =

.,J . ,, 1 = [3.5, 4.5] and I, = [Il.5, 12.5 .

, l * dnat tre f jnctions f and 9 of Corollary I

,, K .T, t wI leriQe that their supports satisfy

, '". ' h t the f rrr (0 , pro ri knolt e . The next

r- ,iw- dwL KS tor posltive f by imposina a separa-

. .ray. - <,,port c f the autocorrelat1on fLnction of f

* t' , , t of f,. Since tne autocorrelation function is

i. i m for arty two functions with tne same Fourier

.. , i vrb .e , k IbdCk disappear.

.-- c twc lemmas. Although the first of these lemmas is

..... -+ , tlv functions, we state and prove it (see

1 .-r<' , for ar itrary complex-valued functions.

emma: 2 et fCL o( ] ), l(f) = [af, bf] and I(auto(f))

• -2', c . Then

I= b- af.

6f
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>h next lemma is really the heart of the matter.

Lemma 3: Let tL Z,'  ) f > 0 and I(autc(f)) -d, •d . if
00

S auto()) i-d, - ] y (-, y) 01 LU n, d]

S(f) [af, at  y) , f - *, bf

ute: Lemma 3 is not true if tre condition that f > ( is

orcppec. Tne function described in Fiqure 5 is a counterexample for

Nov suppose f satisfies the nyootnesis of Lemma 3 with Y = /3.

f(x) for xE[af, af

-0 otherwise

f(x) for XE(bf-~ d, b
f X) =

o otnerwise

Iisiric tr is notation, we nave the following theorem.

Tneorero9: Suppose ( ), f > 0 and I(auto(f)) = [-d, d.
0

:t

S(auto(f)) [-a, - U ], d) U , ]

an 0

Z F1) ( (F2) = 0
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er Iis urLi iquLe a3r~o norineqd, vt7- *.r-ln; I(,. ir

r I

* t &JL, rI , us 1 r.c t!, is t neo remrn req UIres t r) a pC r rr K F. C] C

!t- 1 t tur Li ior tseinc searcnedi for is pclsI tve. H-owever , thert

[T-cl fr* , a P 1 -r a t io0n i t i (-f f n hisi s Q Civ en .

Wt SCM tuyn our attention to the case in, wr icr S is ootter Irr

z' i pp in onl~ 1y c, f ir, ite n umt er o f n or- realI zeroes. let ~n

,)e at arc itranr_, -nite sequence of distinct non-real zeroes of F and

B

V, F (w nf
n=l L -

W,, e"art integers satisfying 0 B n F and F is tne
Ha.1ace trarn-,frrr of a complex-valueo function fE ~) tcc

tii- inverse trarsform of G. Thent by Theorem 7, acL 0' 1% and

5cenote the, complement of S3(f) witn respect tc 1A e et

f ,= ( - =, af) "'P

tcc tne ojec np o,,-t ion o f the open, set S3(f)' into diJoirit open inter-

vals where r is eitner a finite inteqer or .Similarlv, let

6B



- V Yr,, ' ,. wr Q't- C .L' r, -.

- ea- = 3 a r

t r

r''

for a X

ff L~

0. otnerwise

f', for t < x < f

I 2 otnerwise

' for af < <_ s

9 , -_

otherwise

('C() for t < x < bf

C) t n T e

ji othlerwise

e, n . . . .*, N, a-e zeroes of both F 1  an ,

r = w
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At. d- t l" a v'-( t P C -',rd.: , t e I I , r

371 t *,. -'
• I>,: ,. '~ W-+ I C'f 'is" [ r (' g-',' . dtr,

, tm •; sw%

I .> , ' - ,- l - V 3 i b = S t , rT = ,

'ci C'I 
' 

"

f

[f(xi for <(

-1

f, for y > r

L, o tnerwf se

z--d. >A : Zc f , otn F 1  anc F of orders z s

- >. in. it icr, of CF) and

CF

• t" 0) .- -I- IA" = -- r r--- , ( I

- () z1W(F 1-
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1 r 4ssurl , Cf = 0 f IF ) is fir' ir arc for C)r-C rT

(I atiii P i t~ien,

rf(x) for x <-t,

f Y,

Ci otherwise

f(x) for -Sm < X < SM -
2

j. otherwise

f(x) for x > tin2

O otherwise

t'er, eacr zC,(F is a zer" of F_ , F0  and F1  of orders > c,(z),

z

F rZe 2W(F 1-

- F Z

F77 r-,
zeW(F z

.here r = 'n
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'*tflo It jrl iiLiuenesn, in plia5C retrlevi] vwd, -yr .

on rlo"i n2 uin i qie ai d nOr)- Wn iUt fi- cn~ v - t, piw~~

t) T~. t~v I f d f ir, ct icor is compr iso o j pr t V.i r i

>uLiQ' U s tY i t)c, the separation cond ,t ion c f q. C. a,,c

t c, z eros comrT r t n a ari f jrrr- o~ t r)~>o

n"i - f LIOC tOT i s uii qje ariior c f tn -t 'cr 't k te C-arr- v

t i t~ ior. not rieceSO~iri 1 u! i qj, ar n

r t ro'- v S asriawr tn at i f i t I S kriov;' tniat ore f Li -

eri S--ter 1,v fipp nfc a t mOS i fr n nmt, P

triri sanre coo-I s ion nolds ~it; triel criJtor: of E. r

e we C cnr di t r t ' an tre- r e a I ' otmn l )e 'I,' rS

T:Lr, ej I- V k.rinc+o ri ri a v n q dutocorre,a tionls wriose suptrcrts
r - csonriect 1 or conolit ions, i t v a s shiown t'a t I f t n

T T iic-s,-nents of the f Unct ion have no no n- realI z ero ,

+ i irt,*i or uni quLe ariT rlQ nonnecat' ve f 1ir cs 1 r s

vit was Shnown tnat if the transformo of a funst iorra

' r ri~: ofO noO-'rea] zeros , trier the support of tne fL~f c-

iOt~ its e If sa tis'y some spenial nrtc.

.- 'tirer 5 T ri is wo rk wa' sjpportec )v' t iC i or

~I tr ti _ Cedr.ri urder ?ortra -t No. F496? C-8C.--1_-OiQ. hOe

zil a i S o r u~ ar, e~ qrule Cmuv C boiIa te I t! N . Hurt.
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prou -of n~ecorem 1: We have

N

G(w) Sc e- ~ fWF (w
n

n=o

F F~.Vc _(e- isw) f
n=O

N

= (W)Cz N (e-~ -s b)

n=l

- I e- n B

I sw r1

-15ww
I \e - [b e

n



-~ e-i~uib
-T eL + 1 (-o + l) (- -~ + ]

n e-' . ' n

-(elBU (-(eiU

bn  - 2 Re ( b e ) + 1

1 2 Re (b e

= 1.

" t-- If Or-e for u ], L'(u) = 1 and

Hu = G(u) i - G(u) 

"NA-, t neorem 2: We have

Hl ( w ) = F(w)G(w)

H2(w) = F(w)G (w).

ar, trt if Or-

G(u) G

u = F(u) •G(u)

- F(u) G (u)

= H2 (u), . 0.E.L.

Proofs of Theorems 3 and 4: The proofs of these theorems and

tre corollary tc Theorem 3 use Corollary 3 to Theorem 8 and tnerefore

appear immediately following the proof of that corollary.
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roof f Tneorem 5: irst, suppose rr = .. > er ..

SlICj- fc ], { i f i s i nte r a t1e. Th erefo e, , 
r i p. .

rieorem V

F~ (~ 0)

,( 1Fe n )  
n F ( 

-nV

(1.- _ / _ '_

TI- i 
rtalc 

c c

,o . s.:J rmc , ? .' O. L t

gl(x) = Jf (t) dt

f f

a f an f

.o,!f,"f a
t) dtx

ff af

f 
t)I dt dx

( a ff(t dt <

= ( f af)

af

Therefore g is integraole. Furthermore
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-f
F(w) = J f(x) e dx

af

b b

= gl(x) e I  
+ iw gl(x) e-  dx

af af

= iwG1 (w).

.t follows tnat nG (w) = nF(w) - w * 0. By repeatinq tnis process

m times, we obtain

F(w) = (iw)mG (w)m

. e ) 4 C. Now we apply Titchmarsh's theorem to Gm and ontain

,= nF (wn ) nF(Wn)

re f

n=l Wn

were A is a constant.

To evaluate A,, let

('w) : __ F(w ).

Tnen, by expanding F in a Maclaurin series, we obtain

.( ) = . F (0).

On tne other hand,

nF (wn) T F (Wn)

( ) : A e- f w - 1 - -

n=l " n wn
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lfer l f W o .ro

4OO f.f Tneorer 6: et r Dr =c I

_ f 1] By' the Daey-Weiner Tneorem :, . r -

ar entire function of exponential type and by the Hacarrarc %actcrizd-

tior r!eorenl ], p

cc / \ F(iwn) -

FV Ar M e V L -- e xp [ wn 1 wn w n~r IyF
n=1 "

t' rrflnit? product is aosolutely convergent for ali E (.

+ 1._, o. .-4, Theorem :, the series

(w ) I mi)

n=l

assc.~tely convergent.

Zttner f ilows (see D, Tneorem F, p. 223; tral tre p-odt, ct

n exp rr

as aSoluttly convergent. Therefore, tne product

" ,, ( n)
1 exp WYF(w) e () Re

n=l n Ii

1s absolutely convergent. Now F*(w ) is also an ertire function of

exponential type with 2ProeS Wo orders (W n " n 7he-e-

fore, by the same reasotinc,
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- - exp W'*Y (IV,
n ( n F r en

F(Wn)n= n

converges a-so ltely. Then

'YF(Wn)

w

converaes absolutely. Qt.olosEfrtorDta

nC' nw
n=] w

78
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t At n tK' r 7 et

F - --
1 w

n=l 1 n

t ff ri l lnite produCt is absolutely converaent #

Q jW = 1 - uc 12,

= -. . Since F(j) is square-summable, it follows that G

c a-e sQua t-summable. It remains to show

1(g) = I(f).

7irst qe sral! snow tnat I() C (f). Let

a (w n

n

n=!l n

GM w ) = ( r w ) F ( w )

and ,et i ne the inverse transform of Gm.

1i a i

lg M ) C T(f).

Let C be at arbitrary non-real zero of F. Let

l w

H(w) - 0 F(w)
1 w

0
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ard i-t , be tne inverse transforr ( . o ov- . ,, t ,

, StO that

Ow 1

0

. , s saoare-summaole,

Q_ 0 0 '
w - - - ( 0 A0

--- w V.
V. 0 0

0

C C

0 0

h- the inverse transform of 7. 'her

- i ri S~ l

, - D t,

! for t > {C

sgnlt) = 0 for t =
-I for t <0

0 rom 8.31, we aet

V. Wfi(x ) W -O f(x) - o (w w o

o 0

To prove 8.2), it suffices to show that

S.4) * f ) I(f .
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-Jf sy )'sn + s (x-yyI 1-

'~5 s~i~v ~0. 'nen

IIA x - . v
(y f~x e f(y) e dv

lne-e~ort, for x <a, K fyx - . or x > L

Ix x -1.w y

1 w 0X -11w oy
- e f fy ) e d

iw x

CC

w c-~ imp' les 8.,which i n tu-n impliles 8.1).

Sin r c(- U ; 11
m

G -j) G (U))Fu -& (u)H(ul

M, m

< 4 F(u)

Since F u)2 is summahle, it follows from tne Leoescue oominaten

crn vergerice theorem tflat



G( -,) ( 1 U > 0,

., G converqes to G in the L' norm. Therefore gm converaes t: c

i tre norm. Since

i'g m) P , m 1, 3,

;t l.lows that

1(g) c 2If).

Now let a(w,  = 6(v). We have

nG(w) = nF(w) - 8(w) + (w).

Tnerefore 0 _ a(w < ng(W) for wE - j and 0 < a(u) <_ 2 n,(u) for

Let zn be the distinct non-zero zeroes of G. Then

n= n

S Zn

F(w) = G(w)j Z n
nl - z

n1L Zn

arc a similar a-qument yields

1(f) jflg\

oof of Tneorem 8: Assume .F(u) G 0(u) 4 UE r. First we

corTsiger tne case N , 2. Then f * t g * a For n r m, f * f is
tie restriction of f * f to n- and * g is the restrictior

ofu * q tr, n - m" Therefore

f * f m gn *
n m 9*9

and

F F =GG for n e m
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r, r, n r

't finct i ons ar-e entire, we may ci vide Eancti)on

o arc onJ+a id

n, in Gn
6 2

, ~cas f o, since 7F = SC arc, in ,~ case ,
3.Putt inql. and . toqetnepr;

-~ ~~D r.' r nFtr D( m .....

. .. . .. N. Nov we number tre Ilements r

rir

VV n.1~Out
S is, non-aecreasinaQ.

K0
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f, w

a r ir ~ e j (

S k r

0
n W K. ,

rNov, from E'9, we otta 1n

r rr w rr

r ~~ ~ z )=:( r-~ ~

- ,Nand -V w~ r I t f oll1ows f rom .12' that+ tlhe

ve *- Tis eqjatior, is constan t witni respect to n and trie

in c 'oci is constant A ith respect to m. Let

B(w) when 8(w) > 0

S0 otherwise

from wnlcn ' follows thjt
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r] ,. = Fir. ' K 2 ,

H' = FF

.. - , ,. - , t ~. c I th case r, r l aP, C. a, e

. .. a respective an- qrrcI or f

.: s at "onc u uo r of tne theorem ol as.

i .f - C a )

-r
= ~; 'u '

ri of -l h o

= ,'JCr(u =Qu' KFur(

cr- of the theorem nolds, then

I {f+cq/
U .V.' = " Q (w''F(w)

wF (u)F

= " 0 F r

roof of 23orollary I to Theorem _: The im~licatior

f - q F ,, = G u E

1s rmrrn~iate.
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G V 1 I of rloE. r f hol1 def, trier

o W

q(x e if(x + c f c

I r n nc',s, then

G ,* : = e e F'f C

ci). e e 'x, + c f + c j

O",'( r tl Theor em ; Here, N = 1 and = ZF)

r rv foI lIows Q.E .

r

1F (c fF F n

V.- -1

n=1 r

*"r rl -rF r

( w; - F '(C!) C II! - -

n lemrra folrws. o.[.r9.

90



00 + , or ]rv 3 to Tnnrem : Tnhe eOLVa ej 0 nc nf'. . . .- - - -- - - - - - . .-- - - -- - . . . . . .- - -. . . . . -

f F( ) has more than one non-reaI z~rc, tnor

"porno one of them yields a function G(w) sucn that, Uy C-orol ay

G) U, U> JC

daf q are not equivalent.

I i#: By Lemma , if F a, nan nlY one non-rea! zerc, of

c'-ae i, tner, flipping this zero yields a function equivalent to f.

c, s , in turn, equivalent to f, the implication follows. E.0.

'roo _f eTheorem 3: We have

N

V -1-isnw
G(w) = I c e F- (w)

n=O

N

= F(wl Cn(e- iw n

n=O

N

= (w17 (e- iBW b)-

n=]

N
Q(w) H (e- Sw - bn

n=l

Ther 3(w' = F(w)Q.9(w). By Corollary 3 to Theorem C, since f is

unique, F nas either no non-real zeroes or one non-real zero of order

I. Therefore, if '.2 has no non-real zeroes, then G has either no non-

real zeroes or one non-real zero of order 1 and, by the same corol-

lary, g is unique. Therefore, it suffices to show toat . has no non-

-e'Jl zeroes. Suppose O(wo) = 0. Then for some no, 1 _< n0 < N,
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f. Let C

-+ f x f fi

bf f

(t)' (s - t I dt = C.
0

A, rcGr tnese conflait ionls Tht.nmarshi I 'neorem r in

p stcites that 3 anci u _Q(t) =0a.e. i n (. , K

ct + I. > This last ieuI t ipl ies tea*

ner for 0 ac . ctan,

t . diDri trdt:* tn'- interval of support of i s . a r J

trE Ltfer %c supposE > C 0. Tnen f(x) C, a.e. in

f a, , a air cocr*-ad. :tino trie iterval o-f sup~lort Df

),, c f .e m ia -i: 'I d/'_;, then 'y Lemria

> d =K-a,

ar C

af +~ -Y ;> -

0tr fr
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t t itrpia r&cj,rp t(-e r,

c jO~ nler at £r ;r' v a

t lSQ int~rva' :on r F' *

= 5,TO, I

C anc ! > d12. Furthermore,

x ' f r X ~ ; F

0 otnerwi e
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~~Y (0c' - V x~

/ U

,/ ,& q,' - y dx <_ f(x)f(x - y) dx (y, r'

S ... Terefore

J hx(xq(y - y) dx V- yE

6 0

H G = 0.6 6

i , r irtie or of tne interval of support of f, g6 # (. Tnerefore

S c r ,0. Sinct both H and G are entire functinns, it
6 6

- = 0 and h 0. Therefore,; 6

0 for a.a. XE f * + 6, af + j.

.- ,E arb'trarv except for tne condition 0 < < s

f(x = (I for a.a. xc af + a, a +

ov, ,-edefin- , and r for 0 < R - , by-6

f(x) for xE(bf - 6, L
9 x =f

1.) otnerwise
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We pause he-e tc show, for later use, that

).C * 0 for n = I, . .*,

Let t De an inteqer <_ t <_ . We wish to show that rt,e t =. BY

'H + C (w - W + ,t_

+ CtI(w - wt)

( Bn
+ - Wt () Wn

n=l r=l n
n*t

By .3.39),

N N

11(w- w n) 1(w' n )

t w n=l n=l
- wt) N n: N n

E(w - w)n

n=l
nit

Equating the rignt sides of Equations 8.42) and B.43) and setting

= wt, we obtain

N

HF-(wt _ wn
)

n=l
CtB = - N # 0.

H 1(wt - wn)n

n=l

n#t

This proves 8.41).
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Nov 8 S.39) ano cS.40),

(W) n -) , mr
7 7,~ (w _ w )

n,r (w - )

Tnen for real u, 7 ~r is square-summable. Let y nlr be its inverse

tr ansformi.

Tn en

E%44) ., (X r [son (v) Sonr (X)]Xr-1 e i

wnere v'. =u + iv) r n*

'we nave

N n

EIw =, c - n,r ",n,r (w),

n=1 r~1

G(w) =pF(v.)I(w)

N n

-pF~w) - P .C nr F(w) 'n,r(w),

an c.

N an
8.45) g(x) = f(x) - PY'Y C c (f * ynr()
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'-et T P Pm nQ 0k By assumption T 6 . Since P M.arid Q, are open
ilrtervals, T is an open interval. For xcT, f(x) = 0 and g(x) = J.

Tnerefire, from, 8.45),

N n

3.4 1 Cnr(f * -Y , )(x) = 0 for xeT.

n~fl r=1

(f * y n,r )(x) =ff(y)Yn,r Ix - y) dy

2 r1) J()s a ( V + s an x y

(x Y rIe Iwn(-)dy.

-irst assume v > 0. Then

(f " n-r )(x) T e- T-i n - f(y)(x - )r-I e-10 yC.

:f xET, tntn
x

f Y x ir Nlv n x Vr-l e- in
*'n,r Tr .n 1 y( - y e dy

Sr w n x f ( ) x Y r-l - i y

(r 1

= Tr TT 1w n - (x)e " L s/

ff (Y (-iy)(r-l-s) e-iwn y

= 7T -TT-! e L s )Ix
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(f * er ,r(X e - (r F 1 - )!s h 1  (w )(ix)s

3.47) s=0

for ' i 0 ano xcT.

A -iilar calculation yields

r-l________FrlS

n, - )~(x) = 1e n r I F l)'s's (w )(ix) S

s=0

for v, < 0 and XET.

Now let

A 'I{n: 1 n < N and Vn> 01

an a

B ! *n: I < n < N and v( 0)

From S.6) 9.47, .4 ), we obtain, for xcT,

N

c) L2~ Cn r (f * Yn,r(x)
n=l r.1

Z.n.x . n,r.L. (r I - s)Fls -1 (n)(ix)s
ncA r=l s=0

- e 1W X n r-l 1 FrlS wh)

nEB r=1 s0O

[rS L n,r F(r-l-s) (nJS

ew Fxw

n -L i Lr ~ r Fr-l-s)( ] xs

ncB =
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For nEA, let

S.49) 0 Cn F (r-l-s)( ).49) n,s : r " - s ! -1 r

r-s + 1

and for nEB, let

B
.sI in ,r F (r- l- s )

.50) n,s - sT.  (r - l - s). FI n "

r=s+l

Let

N Br-

a(x) = e d ns x

n=l s=O

Then, since a is analytic and a(x) : 0 * xcT,

8.51) a(x) = 0 V x. r.

Claim

dn, s = 0 for 0 <s< n  and n .. N.

Proof of claim: Choose an integer t, 1 < t < N, v t < Vn,

n 1, ., N, ano if vn = vt, then Bn '1. Since a~x) =

0 - XE X,

0 = lim a (x) e dx

R- R 0

I im 1 R ( d sxs dx

Nlim xs  e i(wn - dt)x

E d n,s  ed
n = 1 R-,-- R \S :

nit
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= ,im K , t SR- t s=O s + t 's R

+ N an-I im 7 L R xs e i wn xax
L Eon,s R"  - 0

r,=l s=O
riot

t_ + d R x S wex n

n=1 s=O m

not

7tj j,

N r -
? d ts -Bt d n1n

n=l s=O R
n~t

where

s()= f efl dxe ee

i(Un-Ut)R (vt-vn)R Rs

+ (_,)r S s-r (- s

(s - r)![i(w n - wt)]r+li j i(wn  w

If vt  < V n, then it is clear that

lim I R

R -O Rat

If vn  v t , t h e n n  < t , S < n  1 1 an o
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S

t n wt r S- r Wn  Vt
+- 1

w - s_

ti '-efore 5.3 hol ds 4 n t . It tnen fol lows from F.52) that

t -1. Now repeat the above argument (starting from "Proo" of

" replaced by 6 t - 1. By continuing this proceoure,

w, eventuall-Y obtain,

. ' 0r,s = 0 for 0 < S s < - 1 ana n N , . .

completes proof of claim.

suppose nEA. Then by 8.49) and 8.54),

Fn,r (r-l-S)(wn) 0 0 for 0 <_ s <
- - s)!l - - .

r=S

_, - ',t." [ De defined by

r.,r1

r -n , 1

C 0
n, , n-  . . '5 ,T 6

111

(i e,._" 3 n,6 n_ 2  r, n, an- I n,B n

r C 1 Cn

n,I n,2 n,3 3 n,4 • (n "n,e n
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we also define the vertical vector

F_l (w n )

F (_I ) ( n

1 (wn)

(2) (V = F1 )(wn)

F-1  (Wn)

Then the system of equations 8.55) may be written as

8.56) C.V = 0.

We wish to conclude that V 0 0. It suffices to show that

8.=7)1 det(C) * 0.

we have

det(C) Y ( 1  .) (Cn.

By S.41), C = 0 and therefore 8.57) holds and V 0 0. That is,

nBn
8.58P) F( (W) : 0 for's : 0, ". . . - 1

and ncA.

Furthermore, since en _ n-F(Wn) ,

F(S)(wn) 0 for s = 0, sn - 1

and ncA.

Since F(s)(wn) = (W) + FS)(w), we obtain

1 07



1. ~i w ) = 0 for s 0, ., - 1

and ncmA.

Fror: S.58) and 8.59), we conclude that for ncA, tnev. are zeroes

oot,i FI anc F1  of orders >en'

if nrB, a similar argument yields tne same result. Tnerefort

1l the Vn, = , ., N, are zeroes of both F 1 an. F1 of orde-c

We Lave

-76n

N W I

G~) F(w) n

n=l wj

Define

n - En

Gr (w) Fr(wl w n ,r -,1

n=1 wn

rer, Gr (u), uE 1, ic square-summable. Let 9r be the inverse

transform of Gr, r = -1, 1. we have

F = F 1 + F1.

Therefore,

G G I + G1

ar d

g = -+ g1.

No
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hf 1l) = [af, Smi

ano

=~I  [tm, hf].

By Theorem 7,

I(gr) = (fr ), r -1, 1.

Therefore,

Qk = Pm"

Also, by (if necessary) adjusting the values of g_, and gl on sets

of measure zero,

g(x) for af L x < s m

i 0 otherwise

arid

g g(x) for tm < x <bf

g1 (x)

0 otherwise O.E.D.

Proof of Theorem 11: Let R(F) = {w: Im w > 0 and either wcW or

wr W W n n-I ... ,N . Let

A D(F)' R(F) = Zn: n I, , } with iz I Z: . in  -- n+1

n = 1, . 1. a

in the factorization for F given in Theorem 5, a finite number of the

factors in the infinite product may be reordered without affecting

the value of the product. Therefore we have
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n, ( n F -Z nI

r I i w

n=l n. r:

r z

'>zK~ ~ ~ ~ V F'F) E( n

-n

*~~~ n T .

n

w F z
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II 
-- _i

and let Q he its inverse transform. Then

F (w) ;rTO G(w)

~- (0)

and

FT× -.(0
f(x) -T r)) g(x) a.e.

F r(0)

Therefore S(g) = S(f) and

=~ S(f) =(- -be ) u IMU (-P MjU (-af. K

Since OEP m, O - P and
Pmm mP)0 0

Pm n (-P )

Therefore, by Theorem 10,

P = -P
0 0

Let

(x) (x) for x < 0

0 otherwise

an d

{ g(x) for x > 0

g (x)

0 otherwise

Then

F_1(×)) gj(x) a.e.
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F r)(0)

Z\ne~ er C 'zWF) s a zerr of aciziW F of ordeyor z ano

(z

z (z

~ F flw
F '(F )

n re o rerr 12 L'et R( F, 4, G ana g be dlefined as in tnie p~oNj

r'r PIT Tneri

*; F

F r Z)

F7r)(O)

f(x) = q(x) 8.C-.
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Since P l (-P 0) , it follows by Theorem 10 that m -P

Therefore, f and a are both zero a.e. on (-tm2, -Sm2U (Sm29 tm2

Let

F g(x) for x <-tm?

0 otherwise

an C

g(x) for x > - S.

92(x) =

0 otherwise

Let f 2 (x) = fo(x) + f,(x). Then

f(x) = f 1 l(X) + f2 (x).

By Theorem 10, each zcW(F) is a zero of FI and F2 of orders> aF(Z),

OF(z)

G_,(w) = F1l(w) J7JLi
zcW(F)

FZ)

G2 (w) = Fz(W) 171
zcW(F)

Now let

g(x) for -sm 2  L x < s

g0 (x) =

0 otherwise
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dl I

g(x for x > t

1 0 otherwise

Trier g 'x) g a ( ) + 9l(X). Again by Theorem 10, each zEW(P) is a

of F at, F1  of orders > F(z)

OF(Z)

b. ,) G (w ) = F (w ) Z

zcW(F) 1

G F (w)3J 2
Since

- F(r)(O)
f(x) : 9(x) a.e.,

F (0)

it tallows that

F(r)(O)
f 1(x) = - g (x) a.e.

F (0)

fo(x) = go(x) a.e.
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Therefore

8.62) F l(w) FrT ( Gl(w)

and

3.63) F°(w) F-- G (w).

0 F ( ) 0

Puting 8.60), 8.61), 8.62), and 8.63) together, we obtain

oF(z)

F1 () F(w)ZF-~w = zcW(F) 7-w

an d

a F (Z )

Fo(W) : O) Fo(w)Z
F0(w) = 2)Fw1_Q. E. 0.

zcW(F)
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Abstract

Questions are raised concerning some claims by A.H. Greenaway
and R.H.T. Bates concerning the uniqueness of solutions to the
phase retrieval problem for functions with disconnected support.
A counterexample is presented.
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INTRODUCTION

In this letter, questions are raised concerning some claims by

]reenaway [1] and Bates [2]. These papers are concerned with the question

3f uniqueness of solutions to the phase retrieval problem. This problem,

in the one-dimensional case, can be stated as follows.

Let f be a complex-valued function on tne real line which vanishes

outside of some finite interval. Let F be its Fourier transform. Given

tne modulus of F on the real line, i.e., IF(u) for all real u, the prob-

lem is to reconstruct the original function, f, from this information.

The general uniqueness question is: How many othet functions6, g~f, exist

,CcI vaiu,5h outside o6 some finite &nteva2 and Whose Fouie4 twn.ajc',na

.7,C(-Sia G(u) = F(u) 6oit aZ t ,Leai u?

2. GREENAWAY'S PAPER [1]

Greenaway considers a situation in which the unknown function, f,

is known to be zero outside of the union of two disjoint intervals (a,c)

and (d,b). In other words

f=g+h .

where g is zero outside of (a,c) and h is zero outside of (d,b) (see

Figure 1).

Now let F, G and H be the Fourier transforms of f, g and h, re-

specively, extended by analyticity into the complex plane:

F(w) f f(x)e- iwx dx
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where w u+iv and u and v are real. The modulus of F on the real line,

i.e., F(u),, is given.

The question is: To wLhat extent do the conditoi decuibed above
'i': un(_ c th e j m tion f ?

The functions

e f(x+B) and e (-x+3),

where the overbar denotes complex conjugation and A and 3 are real,

have the same Fourier modulus on the real line as does f. If any of

these functions are also zero outside of the union of the intervals

'ac) and (d,b), then they satisfy all the requirements and qualify as

alternate solutions. These solutions will be said to be asociated

Mith the solution f.

Now the revised question is: AMe thte anu othe,'t so .tions not

Let w be a non-real zero of F, and let

w-w
F1 (w) = F(w) 

w-w0

0

The finction F1 can De viewed as being gotten from F by first remov-
ing a zero at w and then adding a zero at w In other words, the

zero at 0 has 9een 'flipped" about the real line. Now for real w,w=u,

00

u-w
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and tnerefore

F1 (u) F(u)' for all real u.

Hofstetter [3] and Walther [41 proved tnat if fI is any function which

ianisnes outside of some finite ir.'erval ano F (u) = F(u)' for all real

, en F, is gotten from P ny i' arious sets of non-real zeroes

-,rid multipl/ing by a constant If 'dul-s 1 and by an exponential

unction. In particular, if Fl  i- intained from F by flipping the set

c' 311 its non-real zeroes, then its inverse transform, fl, satisfies

f (x) = f(-x),

-"o s if Il vanisnes outside the union of fa,c) and (d,b), then

f, is a solution associated with f. (Here, if a zero of F has multi-

3 icity n, it nust be flipped n times.)

'iow let Z(F) denote the set of all non-real zeroes of F.

reenaway claims that if F is obtained from F by flipping any

, subset, S, of Z(F) (i.e., S Z(F)) and if fl vanishes outside of
tne inion of (a,c) and (d,b), then all the points in S are zeroes of

Doth and H.

Thus, if G and H have no zeroes in common (which would usally be

sne case if g and h are gotten more or less randomly from the real

,vorli), then it would follow that the only solutions are f and its

associated solutions.

'reenaway's claim is true in the special case in which F has only

j finite number of non-real zeroes. (Actually, Greenaway's proof holds

126



-4-

only for the more restricted case in which F has a finite number of non-

real zeroes of order 1. However, the case of higher order zeroes can be

taken care of by an extension of his argument. See [5].)

The following counterexample shows that Greenaway's claim is not

true in general. In this counterexample, the set Z(F) is infinite and

S is an infinite proper subset of Z(F).

Counterexample

Let

l-,xj for xi < 1

0 for x I >_I

See Figure 2. Then the Fourier transform, l , of is given by

. 2

(W) 2)= sinc 2(

Note that ' has no non-real zeroes.

NJow l et

g(x) = 8-(x)

and

h(x) = 2;(x- 4 ) + 3:(x-8) + 2;(x-12).
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Then 3=8, has no non-real zeroes and hence G and H have no non-real

zeroes in common. Let

f(x) = g(x) + h(x)

= 8,:(x) + 2;(x-4) + 3 (x-8) + 2 1(x-12)

nj let

a = -1, c = I, d = 3, b = 13.

-ee -igure 3. Then a c • d - b, the intervals (a,c) and (d,b) are

,iisjoint, and f is zero outside the union of (a,c) and (d,b). The

Fourier transform of f is

F(w) = (3+2e -4iw + 3e 8iw + 2e
-12iw :(w)

= 2 e + 2)e - .e
- 4 2 e(w). (1)

N owq let

9l(x) =4, (x)

and

h1 (x) = 7:(x- 4 ) + 4,(x-12J.
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Then G1=4D has no non-real zeroes and hence G and H1 have no non-real

zeroes in common. Let

fl(x) = gl(x) + hi(x)

= 4 (x) + 7 (x-4) + 4 (x-12).

See Figure 3. Then f is also zero outside of the union of (a,c) and

Id,b). The Fourier transform of f is

Fl(w) = (4 + 7e-
4 iw + 4e " 12iw) D(w)

= 2 (2e-4iw + )(e "8 i w- .5e' 4 iw + 2) ,(w)

= 2e4iw (e4iW + 2) (e-8w - .5e-4iw + 2) ,(w) (2)

It follows from (1) and (2) that

F(w) e e "4 iw  e e4iWe+2 IF(w).
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Now, for real w,w=u,

e 4  e4 u+2 = .

e +2

Therefore

jF,(u:=;F1  u)! for all real u.

Thus f and f, are both solutions and it is clear that they are not

associated.

In order to see which zeroes must be flipped to get Fl from F, let

-' -4iw.1 w )  =e " i  + 2

and

S
8  .5e-4iw + 2.

Then

F(w) = 27l (w) ?2(w)P(w) (3)

and

Fl(w) 12e4 i w -l(-) F2(w)(w) (4)
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Since has no non-real zeroes and e-4iw is never zero, it follows from

(3) and (4) that

Z(F) = Z(?1 ) U Z(r 2 )

and

Z(F1 ) : Z( l ) U Z(-2)

where

Z( l  ={ : wGZ (rl)I

Thus the zeroes of F which are in S=Z(71 ) are flipped. The sets Z(-,)

and Z(72) are given by

Z(7 1) = - + f n + - log 2: n=O,+l,+2, ...

and

2(72) {. + tan-' + 2n + i log 2: n=O,+l,+2,...

See Figure 4. The flipping of the zeroes in S is followed by multipli-
-4iw

cation by the exponential e-  . The latter simply has the effect of

translating fl into the proper position.
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:n the above example the function could be replaced by any func-

"i n .nicn is zero outside of the interval (-1,1) and whose Fourier trans-

'orn 'nal no non-real zeroes. For example, ; could be replaced by

: (x) : c ( * )(2x)

.4nere * denotes convolution, or by

- I 1 for x! 1

y 0 for x >l

3. BATE'S PAPER 
2o

Bates considers the situation in which

N

f(x) : f n(X)

n=l

wnere each f is zero outside of an interval I and the intervals
n n

I ,n=l ... N are pairwise disjoint. He claims that if the Fourier trans-

fors, Fn , have no non-real zeros common to all of them, then f and its

associated solutions are the only functions with compact support and

,vhose Fourier transforms have the same moduli as that of the Fourier

transform of f. Thus Bates claims even more than Greenaway does.

Therefore, the above example is also a counterexample to Bates' claim.
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A stronger separation condition on the In which does work can be

found in [5].
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Figure Captions

Figure I: Member of the class of functions with disconnected
support. Note: Although the functions g and h are
represented here as positive real functions, they
can be complex-valued.

Figure 3: Functions f(x) (above) and fI(x) (below) have the
same Fourier modulus.

Figure 4: Above: non-real zerores of F. Below: non-real
zeroes of F1 . The circled zeroes are flipped.
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APPENDIX 0

W116l. D~etermining the Support of an Object from the Support
of Its Atitcorrelation. J Hi FNtIt[[ ANW) It CR('IMMINS. Hadar
ma ( p is i ision, Ent rion nori tml Reseanrch Irsti tot if, (if A'lar
P' (II-~ n ro mhj'r p/).In astronomv, xray

r Istllug rirpir aid ot her discipi i nis, i te often wishes to reconstruct
an ibjet Ifdistribo t ion from its ao Ioi orrelat ion or, equivalent IIv. fromn
the nodolmis (if it, Fooii et t ransform i i.e ,the phase retrieval prob-
iemn It v, A- Isi sefu it be able to reconstruct Just the support of the
ifie i it e' ,he rginin w hit- it is nonzero). In soime cases, fir ex-
anilc. it, oii the relative- locat loris of a number orf poititlike stars, the
iifilvct S siililitt is hr udesired information. In additioin, once the

jr't is shupport is knownen the rcionstruction of the object d istrifbut ion
b ri. ff iterative methiid is simplified, We show several methiids of
finding sets which contain the support of an object, based (in the
siippiirt (if its autocorrelation. The smaller these sets are, the inore
infirmation they' give about the suppourt of the object. P'articiilarly
small sets cintaining the object's support are given by intersections
of its auocorrelatiir's support with translates of its autocorrelar ion's
support. It will be shown that firr special cases this gives rise to a
unique reconstruction of the support rif the object frin the SUipcirr
if its autiicrrelatiiori 413 ii. I

%%W,,,k -uppii iv AFO( S14
.1 i t~ii F)- i O pt Lett,. 3. 2. 155
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